Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронная система контроля устойчивости автомобиля

Электронная система контроля устойчивости автомобиля

Электронный контроль устойчивости (англ.  Electronic Stability Control , ESC; ЭКУ) или динамическая система стабилизации автомобиля — активная система безопасности автомобиля, позволяющая предотвратить занос посредством управления компьютером момента силы колеса (одновременно одного или нескольких). Является вспомогательной системой автомобиля.

Содержание

Сущность системы [ править | править код ]

Систему ЭКУ можно рассматривать как расширенный вариант антиблокировочной системы тормозов (АБС). Многие узлы объединены с системой АБС, но вдобавок ЭКУ требует наличия таких компонентов, как датчик положения руля и МЭМС гироскоп, следящий за реальным поворотом автомобиля. При несоответствии показаний гироскопа показаниям датчика поворота руля, система применяет торможение одного (или нескольких) из колёс машины для того, чтобы предотвратить начинающийся занос.

Срабатывает ESC в опасных ситуациях, когда возможна или уже произошла потеря управляемости автомобилем. Путём притормаживания отдельных колес система стабилизирует движение. Она вступает в работу, когда на большой скорости при прохождении поворота передние колеса сносит с заданной траектории в направлении действия сил инерции, то есть по радиусу большему, чем радиус поворота. ESC в этом случае притормаживает заднее колесо, идущее по внутреннему радиусу поворота, придавая автомобилю большую поворачиваемость и направляя его в поворот. Одновременно с притормаживанием колес ESC снижает обороты двигателя.

Если при прохождении поворота происходит занос задней части автомобиля, ESC активизирует тормоз переднего колеса, идущего по наружному радиусу поворота. Таким образом, появляется момент противовращения, исключающий боковой занос. Когда скользят все четыре колеса, ESC самостоятельно решает, тормозные механизмы каких колес должны вступить в работу. Время реакции ESC — 20 миллисекунд. Работает система на любых скоростях и в любых режимах движения.

Данная система пока является наиболее эффективной системой безопасности. Она способна компенсировать ошибки водителя, нейтрализуя и исключая занос, когда контроль над автомобилем уже потерян, однако её возможности ограничены: если радиус поворота слишком мал или скорость в повороте превышает допустимые границы, никакая программа стабилизации не поможет.

История [ править | править код ]

Впервые системы электронного контроля устойчивости, схожие по принципу действия с современными автомобильными, появились в 1960-х годах в авиации, где обеспечивали устойчивость самолета при пробеге по взлетно-посадочной полосе при посадке или прерванном взлете. Одним из первых такую систему получил англо-французский сверхзвуковой лайнер Concorde по причине высокой посадочной скорости и высокого положения центра масс.

В 1987 году Mercedes-Benz и BMW представили первые системы контроля тяги (противобуксовочные системы).

В 1990 году Mitsubishi выпустила в Японии автомобиль марки Diamante (Sigma), оснащенный новой активной электронной системой контроля тяги и курсовой устойчивости, где впервые эти две системы были интегрированы в одну (названная TCL).

BMW совместно с Robert Bosch GmbH и Continental Automotive Systems разработали систему, уменьшающую крутящий момент, передаваемый двигателем колесу, для предотвращения заноса и применили её в модельном ряду BMW 1992 года. С 1987 по 1992 года, Mercedes-Benz и Robert Bosch GmbH совместно разрабатывали систему электронного контроля устойчивости автомобиля и назвали её « Elektronisches Stabilitätsprogramm » (ESP).

История Mercedes-Benz А-класса [ править | править код ]

Система ESC была создана в 1995 году, но заявить о себе ей удалось только через два года, когда дебютировал первый компактный Mercedes-Benz А-класса. При его проектировании были допущены серьёзные ошибки, которые привели к тому, что новая модель имела склонность к опрокидыванию даже на не очень высокой скорости при выполнении маневров типа «переставка» («лосиный» тест, объезд препятствия).

В Европе разразился скандал; продажи автомобилей Mercedes-Benz А-класса были приостановлены, уже проданные машины — отозваны для устранения недостатков. Перед инженерами компании встала задача: как, не перепроектируя заново автомобиль и сохранив его потребительские качества, решить проблему повышения устойчивости. Эта задача была решена в значительной степени за счет установки с февраля 1998 года соответствующим образом настроенной системы ESC.

Главный контроллер ESC — это два микропроцессора, каждый из которых имеет по 56 КБ памяти. Система позволяет считывать и обрабатывать значения, выдаваемые датчиками скорости вращения колес с 20-миллисекундным интервалом. Помимо А-класса, система ESP является стандартным оборудованием для Mercedes S-класса, E-класса и других. На автомобилях фирмы Daimler-Chrysler применяются системы ESC от лидера в данной области — фирмы Bosch. Системы ESC производства Bosch используют также фирмы Alfa-Romeo, BMW, Volkswagen, Audi, Porsche и другие.

Читайте так же:
Монтаж тройного проходного выключателя

Фактически именно случай с Mercedes-Benz A-класса проторил дорогу повсеместному внедрению электронного контроля устойчивости на европейских автомобилях.

Распространение [ править | править код ]

Пока Швеция проводит кампании по информированию общественности и продвижению использования систем ЭКУ, другие страны законодательно утверждают необходимость их использования.

Обязательное оснащение автомобилей электронной системой устойчивости вводится, с:

  • 1 января 2010 года в Израиле уже стала обязательной. [1]
  • 1 сентября 2011 года в Канаде, для всех новых пассажирских автомобилей.
  • 1 ноября 2011 года в Австралии, для всех пассажирских автомобилей.
  • с ноября 2011 года в Евросоюзе, для всех продаваемых автомобилей.
  • c 2011 года в США, для всех пассажирских автомобилей, весом менее 4536 кг (10 000 фунтов).

Последствия применения [ править | править код ]

Эксперты называют систему ЭКУ самым важным изобретением в сфере автомобильной безопасности после ремней безопасности. Она обеспечивает водителю лучший контроль над поведением автомобиля, следя за тем, чтобы он перемещался в том направлении, куда указывает поворот руля. По данным американского Страхового института дорожной безопасности (IIHS) и Национального управления безопасностью движения на трассах NHTSA (США), примерно одна треть смертельных аварий могла бы быть предотвращена системой ЭКУ, если бы ей были оснащены все автомобили [2] .

Электронная система контроля устойчивости (ESP) Kia Optima с 2015 года

Обычно пользователи нашего сайта находят эту страницу по следующим запросам:
нет тормозов Kia Optima , прокачка тормозов Kia Optima , схема тормозной системы Kia Optima , ремонт тормозной системы Kia Optima , неисправности тормозной системы Kia Optima

8. Электронная система контроля устойчивости (ESP)

1. ESC (система электронного контроля устойчивости). 2. Датчик частоты вращения переднего колеса. 3. Датчик частоты вращения заднего колеса. 4. Выключатель ESC.

Электронная система курсовой устойчивости (ESC) распознает критические условия вождения, такие как панические реакции в опасных ситуациях, и стабилизирует автомобиль путем индивидуального торможения колес и вмешательством в управление двигателем.

Система ESC добавляет к функциям систем ABS, TCS, EBD и ESC еще одну функцию – активное управление рысканьем (AYC). С другой стороны, функции ABS/TCS управляют пробуксовкой колес при торможении и ускорении и, таким образом, воздействуют на продольную динамику автомобиля, а функция активного управления рысканьем стабилизирует автомобиль относительно его вертикальной оси. Это достигается вмешательством в работу тормозных механизмов отдельных колес и мгновенной подстройкой крутящего момента двигателя без необходимости совершения каких-либо действий водителем.

Блок ESC состоит из трех основных узлов: датчики, ЭБУ и исполнительные механизмы.

Функция контроля стабильности работает в любых условиях движения и работы. В определенных условиях движения функция ABS/TCS по команде водителя может быть активирована одновременно с функцией ESC.

В случае отказа системы стабилизации курсовой устойчивости продолжает работать основная система обеспечения безопасности — ABS.

Описание управления ESC:

Система ESC имеет функции ABS/EBD, TCS и AYC.

Функция ABS/EBD: ЭБУ преобразует сигналы, поступающие от четырех активных датчиков частоты вращения колес (в текущем положении рычага переключения передач), до прямоугольной формы. По этим входным сигналам ECU производится вычисление скорости транспортного средства и ускорение или замедление четырех колес. Затем ECU определяется необходимость задействования системы ABS/EBD.

Функциональный блок TCS предотвращает проскальзывание ведущих колес путем создания дополнительного давления в тормозной системе и уменьшения крутящего момента двигателя с использованием сети CAN для обмена данными. Этот блок, также, как и ABS, использует сигнал датчика скорости вращения колеса для определения проскальзывания колеса.

Функция AYC предупреждаются маневры транспортного средства, которые могут нарушить его устойчивость. В процессе оценки маневров функцией AYC используются сигналы датчиков маневрирования (датчик рысканья, датчик поперечного ускорения, датчик угла поворота рулевого колеса).

Если маневр может привести к потере устойчивости (чрезмерное или недостаточное поворачивание), то функция AYC обеспечивает торможение определенного колеса и передает по шине CAN сигнал уменьшения крутящего момента двигателя.

После включения зажигания ЭБУ постоянно выполняет диагностику системы (самодиагностику) на наличие сбоев. При обнаружении ошибки системы блок ЭБУ информирует водителя о неисправности с помощью контрольной лампы BRAKE/ABS/ESC (тормоз/ABS/ESC) (предупреждение об аварийном режиме).

Читайте так же:
Выключатели приборов с диодом

Блок управления ESC (гидроэлектронный блок управления)

Аналогично, как и блок управления ABS (см. выше).

Датчик скорости вращения переднего колеса

Аналогично, как и на антиблокировочной системе тормозов (см. выше).

Датчик скорости вращения заднего колеса

Аналогично, как и на антиблокировочной системе тормозов (см. выше).

Выключатель ESC OFF

1. Систему ESC можно отключить выключателем ESC OFF.

2. При отключении системы выключателем ESC OFF загорается лампа ESC OFF.

Снятие и установка

1. Поверните ключ зажигания в положение OFF и отсоедините отрицательный (-) кабель от АКБ.

2. Снимите нижнюю часть передней панели.

3. Снимите узел (А) переключателя на передней панели.

4. Установка выполняется в порядке, обратном разборке.

Датчик угла поворота рулевого колеса

Датчик угла поворота рулевого колеса определяет направление поворота автомобиля. Определенное датчиком направление поворота передается в блок HECU в виде сигнала CAN, включающего также информацию об угле поворота.

Блок HECU по этому сигналу CAN определяет скорость вращения рулевого колеса и угол его поворота. Блок HECU использует этот сигнал также и в качестве входного сигнала для стабилизации крена.

Система экстренной сигнализации

Представление системы быстрого оповещения о торможении (ESS):

Если водитель прибегает к экстренному торможению, стоп-сигналы и указатели поворота начинают мигать для предупреждения водителей тех автомобилей, которые движутся сзади.

1. Базовая функция (включение в мигающем режиме стоп-сигналов и фонарей аварийной световой сигнализации).

– Условия срабатывания: при экстренном торможении или срабатывании системы ABS при превышении определенной скорости.

– Условия деактивации: при прекращении экстренного торможения или при прекращении работы системы ABS.

2. Дополнительная функция (задействование указателей поворота в мигающем режиме).

Релейная защита

В электрической части энергосистем могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций линий электропередачи и электроустановок потребителей электроэнергии. Повреждения вызывают появление значительных аварийных токов и сопровождаются глубоким понижением напряжения на шинах электростанций и подстанций. Ток повреждения выделяет большое количество теплоты, которые вызывает сильное разрушение в месте повреждения и опасное нагревание проводов неповрежденных ЛЭП и оборудования, по которым этот ток проходит. Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы элементов энергосистемы.

Ненормальные режимы обычно приводят к отклонению напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи. Для уменьшения разрушений в месте повреждения и обеспечения нормальной работы неповрежденной части энергосистемы необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной части энергосистемы. Опасные последствия ненормальных режимов также можно предотвратить, если своевременно принять меры к их устранению, а при необходимости отключить оборудование, оказавшееся в недопустимом для него режиме.

Выявление и отключение повреждений следует производить очень быстро — в большинстве в течение сотых и десятых долей секунды, что может быть обеспечено только средствами автоматики. В связи с этим возникла необходимость в создании и применении автоматических устройств, защищающих энергосистему и ее элементы от опасных последствий повреждений и ненормальных режимов. Первоначально в качестве подобной защиты применялись плавкие предохранители. Впоследствии были созданы защитные устройства, выполняемые при помощи электрических автоматовреле. Такой способ получил название релейной защиты.

Релейная защита (РЗ) осуществляет непрерывный контроль за состоянием всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить поврежденный участок и отключить его от энергосистемы, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

При возникновении ненормальных режимов РЗ также должна выявлять их и в зависимости от характера нарушения либо отключать оборудование, если возникла опасность его повреждения, либо производить автоматические операции, необходимые для восстановления нормального режима, либо осуществлять сигнализацию оперативному персоналу, который должен принимать меры по ликвидации ненормальности.

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.

Структура РЗ и ее основные элементы

Релейную защиту можно рассматривать как управляющую систему, которая в общем случае получает информацию о токах, напряжениях и состоянии коммутационных элементов в отдельных частях энергосистемы. В результате обработки этой информации РЗ вырабатывает управляющие сигналы для выключателей (команды отключения или включения), а также различные сообщения, позволяющие фиксировать или анализировать процессы, протекающие в энергосистеме, и функционирование самой РЗ.

Читайте так же:
Диагностика состояния масляных выключателей

Каждое устройство РЗ, призванное обнаружить повреждение и дать команду на отключение силового выключателя, имеет три структурные части: измерительную (реагирующую), логическую (оперативную) и управляющую (исполнительную).

  • Измерительная часть осуществляет непрерывный контроль за состоянием защищаемого объекта и, реагируя на появление в нем повреждения (или ненормального режима), срабатывает и выдает дискретные сигналы на вход логической части, приводящие ее в действие. В качестве контролируемых величин (входных сигналов) служит в зависимости от вида РЗ ток и/или напряжение защищаемого объекта. Эти величины в установках с рабочим напряжением выше 1000 В подводятся к измерительной части защиты через измерительные трансформаторы тока и напряжения.
  • Логическая часть воспринимает дискретные сигналы измерительной части, производит с помощью логических элементов (реле) по заданной программе логические операции и подает выходной сигнал о срабатывании РЗ на управляющую часть.
  • Управляющая часть служит для усиления сигнала логической части до значения, необходимого для отключения выключателя и приведения в действие других устройств (поскольку сигналы логической части, особенно при выполнении ее на полупроводниковых элементах, обычно имеют недостаточную мощность) и для размножения сигнала логической части.

Кроме того, в качестве структурной части РЗ следует назвать источник питания — специальный источник стабильного напряжения для приведения в действие элементов логической и управляющей частей, подачи команды на отключение выключателей, а также для питания полупроводниковых элементов измерительной и логической частей.

Устройство РЗ состоит из реле, соединенных между собой по определенной схеме. В практике релестроения используются три типа элементных баз:

  • электромеханическая, которая может применяться для реализации всех функциональных частей и органов РЗ в виде электромеханических реле;
  • полупроводниковая, которая может использоваться для реализации всех функциональных частей и органов РЗ в виде полупроводниковых элементов, аналоговых и цифровых микросхем;
  • микропроцессорная, которая может использоваться для реализации измерительной и логической частей РЗ на базе систем, основным элементом которых являются микропроцессоры.
Основные требования к устройствам РЗ. Виды устройств РЗ

Основными показателями релейной защиты, характеризующими ее функции в энергосистеме, являются чувствительность и селективность. Первая — это свойство РЗ реагировать на возможные повреждения на защищаемом участке и достаточно быстро их отключать, с тем чтобы сохранялась работоспособность как отключенных, так и оставшихся в работе элементов сети; вторая — это свойство РЗ формировать команды отключения только поврежденного участка или минимального числа участков электрической сети вблизи места повреждения, с тем чтобы свести к минимуму недоотпуск электроэнергии потребителям.

Реализация этих функций осуществляется устройствами РЗ, которые должны удовлетворять ряду требований по обеспечению их правильного функционирования в реальных режимах работы энергосистемы. В соответствие со стандартом МЭК 50(448)-1995, неправильное функционирование защиты может выражаться в виде отказа защиты в функционировании или в непредусмотренном функционировании (излишнее действие). С точки зрения правильного функционирования к устройствам РЗ предъявляются следующие требования:

  • статическая устойчивость функционирования как способность устройства РЗ сохранять стабильность измерения и обеспечивать точность измерения, характеристики, параметры и настройки, при условии, что эти входные величины являются установившимися; она определяется в основном выполнением требований по точности параметров, характеристик, настроек в заданных диапазонах входных сигналов;
  • динамическая устойчивость функционирования, которая характеризует способность устройства РЗ обеспечивать свои функции с учетом переходных процессов, возникающих при коротком замыкании и коммутациях в энергосистеме и самом устройстве РЗ. Требование динамической устойчивости функционирования учитывается при разработке алгоритмов и конструкции устройств РЗ;
  • устойчивость к влиянию внешней среды, среди видов воздействий которой — электрические, механические и климатические;
  • надежность РЗ, под которой понимается вероятность выполнения ею требуемых функций при заданных условиях в течение заданного промежутка времени. Стандартом МЭК 50(448)-1995 определяются понятия надежности несрабатывания и надежности срабатывания.

Все РЗ делятся на основные и резервные. Основными называются РЗ, обеспечивающие отключение повреждений в пределах защищаемого элемента с требуемыми быстротой и чувствительностью. Резервными называются РЗ, осуществляющие резервирование основной РО в случае ее отказа или вывода из работы и защиту следующего участка в случае отказа его РЗ или выключателя.

Читайте так же:
Как подсоединить навесной выключатель

По способу обеспечения селективности действия РЗ подразделяются на два вида — с абсолютной селективностью, зона действий которых не выходит за пределы защищаемого объекта, действия выполняются без выдержки времени; и с относительной селективностью, действующие при коротком замыкании как на защищаемом элементе, так и за его пределами, селективность обеспечивается при этом подбором выдержек времени.

Кроме того, по принципу действия измерительных органов, определяющих факт возникновения короткого замыкания и место его нахождения, различают группы РЗ, реагирующие на следующие факторы: увеличение тока, уменьшение сопротивления, появление разности токов по концам защищаемого участка, изменение фаз тока относительно напряжения.

Цифровая релейная защита

Последнее десятилетие характеризуется широким применением в релейной защите цифровой (микропроцессорной) техники. Это обусловлено существенными преимуществами последней по сравнению с электромеханическими и электронными РЗ. В частности, эти преимущества заключаются в следующем:

  • повышении аппаратной надежности, массы и габаритов устройств благодаря существенному уменьшению числа используемых блоков и соединений;
  • существенном повышении удобства обслуживания и возможности сокращения обслуживающего персонала;
  • расширении и улучшении качества защитных функций (чувствительности, селективности, статической и динамической устойчивости функционирования);
  • возможности непосредственной регистрации процессов и событий и анализа возникших в энергосистеме повреждений;
  • принципиально новых возможностей управления защитой и передачи от нее информации на географически удаленные уровни управления;
  • технологичности производства.

Принципы построения и алгоритмы, используемые в цифровой релейной защите (ЦРЗ), во многом отличаются от применяемых в электромеханических и электронных релейных защитах, ввиду существенно различающихся технической основы и способов обработки информации. Входная информация, которую получает ЦРЗ, может в общем случае содержать следующие составляющие: аналоговые сигналы, характеризующие контролируемые величины энергосистемы; входная дискретная информация, в том числе сигналы от коммутационных аппаратов, других устройств РЗ и от обслуживающего персонала; цифровая информация от других устройств РЗ, характеризующая как текущие значения переменного тока, так и логические сигналы, получаемые посредством цифровых коммуникационных интерфейсов; управление настройками и параметрами ЦРЗ, осуществляемое обслуживающим персоналом или системами управления через коммуникационный интерфейс. Выходная информация ЦРЗ может быть представлена следующими пунктами: выходная дискретная информация (логические сигналы к другим защитам и на отключение выключателей); цифровая информация к другим устройствам, характеризующая в общем случае как текущие значения переменного тока, так и логические сигналы, и получаемая посредством цифровых коммуникационных интерфейсов; сообщения различных видов, в том числе логические выходные сигналы и цифровые данные, как то: визуальное наблюдение, запись измеряемых защитой аналоговых величин токов, напряжений, мощности и пр. в нормальном и аварийном режимах; др.

Среди основных структурных элементов ЦЗР можно выделить следующие функциональные блоки:

Электронный контроль устойчивости

Электронный контроль устойчивости (англ.  Electronic Stability Control , ESC; ЭКУ) или динамическая система стабилизации автомобиля — активная система безопасности автомобиля, позволяющая предотвратить занос посредством управления компьютером момента силы колеса (одновременно одного или нескольких). Является вспомогательной системой автомобиля.

Содержание

Сущность системы

Систему ЭКУ можно рассматривать как расширенный вариант антиблокировочной системы тормозов (АБС). Многие узлы объединены с системой АБС, но вдобавок ЭКУ требует наличия таких компонентов, как датчик положения руля и МЭМС гироскоп, следящий за реальным поворотом автомобиля. При несоответствии показаний гироскопа показаниям датчика поворота руля, система применяет торможение одного (или нескольких) из колёс машины для того, чтобы предотвратить начинающийся занос.

Срабатывает ESC в опасных ситуациях, когда возможна или уже произошла потеря управляемости автомобилем. Путём притормаживания отдельных колес система стабилизирует движение. Она вступает в работу, когда на большой скорости при прохождении поворота передние колеса сносит с заданной траектории в направлении действия сил инерции, то есть по радиусу большему, чем радиус поворота. ESC в этом случае притормаживает заднее колесо, идущее по внутреннему радиусу поворота, придавая автомобилю большую поворачиваемость и направляя его в поворот. Одновременно с притормаживанием колес ESC снижает обороты двигателя.

Если при прохождении поворота происходит занос задней части автомобиля, ESC активизирует тормоз переднего колеса, идущего по наружному радиусу поворота. Таким образом, появляется момент противовращения, исключающий боковой занос. Когда скользят все четыре колеса, ESC самостоятельно решает, тормозные механизмы каких колес должны вступить в работу. Время реакции ESC — 20 миллисекунд. Работает система на любых скоростях и в любых режимах движения.

Читайте так же:
Механизм выключателя открытой установки

Данная система пока является наиболее эффективной системой безопасности. Она способна компенсировать ошибки водителя, нейтрализуя и исключая занос, когда контроль над автомобилем уже потерян, однако её возможности ограничены: если радиус поворота слишком мал или скорость в повороте превышает допустимые границы, никакая программа стабилизации не поможет.

История

Впервые системы электронного контроля устойчивости, схожие по принципу действия с современными автомобильными, появились в 1960-х годах в авиации, где обеспечивали устойчивость самолета при пробеге по взлетно-посадочной полосе при посадке или прерванном взлете. Одним из первых такую систему получил англо-французский сверхзвуковой лайнер Concorde по причине высокой посадочной скорости и высокого положения центра масс.

В 1987 году Mercedes-Benz и BMW представили первые системы контроля тяги (противобуксовочные системы).

В 1990 году Mitsubishi выпустила в Японии автомобиль марки Diamante (Sigma), оснащенный новой активной электронной системой контроля тяги и курсовой устойчивости, где впервые эти две системы были интегрированы в одну (названная TCL).

BMW совместно с Robert Bosch GmbH и Continental Automotive Systems разработали систему, уменьшающую крутящий момент, передаваемый двигателем колесу, для предотвращения заноса и применили её в модельном ряду BMW 1992 года. С 1987 по 1992 года, Mercedes-Benz и Robert Bosch GmbH совместно разрабатывали систему электронного контроля устойчивости автомобиля и назвали её « Elektronisches Stabilitätsprogramm » (ESP).

История Mercedes-Benz А-класса

Система ESC была создана в 1995 году, но заявить о себе ей удалось только через два года, когда дебютировал первый компактный Mercedes-Benz А-класса. При его проектировании были допущены серьёзные ошибки, которые привели к тому, что новая модель имела склонность к опрокидыванию даже на не очень высокой скорости при выполнении маневров типа «переставка» («лосиный» тест, объезд препятствия).

В Европе разразился скандал; продажи автомобилей Mercedes-Benz А-класса были приостановлены, уже проданные машины — отозваны для устранения недостатков. Перед инженерами компании встала задача: как, не перепроектируя заново автомобиль и сохранив его потребительские качества, решить проблему повышения устойчивости. Эта задача была решена в значительной степени за счет установки с февраля 1998 года соответствующим образом настроенной системы ESC.

Главный контроллер ESC — это два микропроцессора, каждый из которых имеет по 56 КБ памяти. Система позволяет считывать и обрабатывать значения, выдаваемые датчиками скорости вращения колес с 20-миллисекундным интервалом. Помимо А-класса, система ESP является стандартным оборудованием для Mercedes S-класса, E-класса и других. На автомобилях фирмы Daimler-Chrysler применяются системы ESC от лидера в данной области — фирмы Bosch. Системы ESC производства Bosch используют также фирмы Alfa-Romeo, BMW, Volkswagen, Audi, Porsche и другие.

Фактически именно случай с Mercedes-Benz A-класса проторил дорогу повсеместному внедрению электронного контроля устойчивости на европейских автомобилях.

Распространение

Пока Швеция проводит кампании по информированию общественности и продвижению использования систем ЭКУ, другие страны законодательно утверждают необходимость их использования.

Обязательное оснащение автомобилей электронной системой устойчивости вводится, с:

  • 1 января 2010 года в Израиле уже стала обязательной. [1]
  • 1 сентября 2011 года в Канаде, для всех новых пассажирских автомобилей.
  • 1 ноября 2011 года в Австралии, для всех пассажирских автомобилей.
  • с ноября 2011 года в Евросоюзе, для всех продаваемых автомобилей.
  • c 2011 года в США, для всех пассажирских автомобилей, весом менее 4536 кг (10 000 фунтов).

Последствия применения

Эксперты называют систему ЭКУ самым важным изобретением в сфере автомобильной безопасности после ремней безопасности. Она обеспечивает водителю лучший контроль над поведением автомобиля, следя за тем, чтобы он перемещался в том направлении, куда указывает поворот руля. По данным американского Страхового института дорожной безопасности (IIHS) и Национального управления безопасностью движения на трассах NHTSA (США), примерно одна треть смертельных аварий могла бы быть предотвращена системой ЭКУ, если бы ей были оснащены все автомобили [2] .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector