Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Классификация стойкости оборудования к импульсным напряжениям (классификация категорий перенапряжения)

Классификация стойкости оборудования к импульсным напряжениям (классификация категорий перенапряжения)

Классификация стойкости оборудования к импульсным напряжениям (классификация категорий перенапряжения)

В целях координации изоляции в электроустановках определены категории перенапряжения и представлена соответствующая классификация стойкости электрического оборудования (категории стойкости изоляции оборудования) к импульсным напряжениям.
Номинальная стойкость оборудования к импульсным напряжениям — это выдерживаемое оборудованием импульсное напряжение, указанное изготовителем для оборудования или его части и характеризующее заданную способность его изоляции выдерживать перенапряжения (в соответствии с МЭК 60664-1, пункт 3.9.2).
Оборудование со стойкостью к импульсным напряжениям, соответствующей IV категории перенапряжения, пригодно для применения на вводе в электроустановку или вблизи него, например выше главного распределительного щита. Оборудование IV категории обладает очень высокой стойкостью к импульсным напряжениям, обеспечивающей требуемый высокий уровень надежности. Примерами такого оборудования являются электрические измерительные приборы, устройства первичной защиты от сверхтока и устройства сглаживания пульсаций.
Оборудование со стойкостью к импульсным напряжениям, соответствующей III категории перенапряжения, пригодно для применения в стационарных установках ниже по ходу распределения электроэнергии, включая главный распределительный щит, и обеспечивает высокий уровень эксплуатационной работоспособности. Примерами такого оборудования являются распределительные щиты, автоматические выключатели, электропроводки, включая кабели, шины, соединительные коробки, выключатели, штепсельные розетки в стационарных установках, оборудование для применения в промышленных условиях и некоторое другое оборудование, например неподвижно установленные двигатели с постоянным подключением к стационарным установкам.
Оборудование со стойкостью к импульсным напряжениям, соответствующей II категории перенапряжения, пригодно для подключения к стационарным установкам и обеспечивает нормальный уровень соответствия требованиям, предъявляемым обычно к электроприемникам. Примерами такого оборудования являются электробытовые приборы и аналогичные нагрузки.
Оборудование со стойкостью к импульсным напряжениям, соответствующей I категории перенапряжения, пригодно для использования только в стационарных электроустановках зданий в случаях, когда для ограничения перенапряжений переходных процессов до заданного уровня применены средства защиты, установленные вне оборудования. Примерами такого оборудования является оборудование, содержащее электронные цепи, например компьютеры, бытовые приборы с электронным программированием и т.д.
Оборудование со стойкостью к импульсным напряжениям, соответствующей I категории перенапряжения, не должно присоединяться непосредственно к распределительной электрической сети.

Статистические оценки измерений показывают, что риск превышения коммутационными перенапряжениями уровня перенапряжений категории II является небольшим .

Требуемая стойкость оборудования к импульсным напряжениям:

Источники информации:
1. ГОСТ Р 50571-4-44-2011 (МЭК 60364-4-44:2007). Электроустановки низковольтные. Часть 4-44. Требования по обеспечению безопасности. Защита от отклонений напряжения и электромагнитных помех.

Что такое прогрузка автоматических выключателей

При работе энергосистемы, зачастую необходимо включать или выключать различные цепи (например, линии электропередач, распределительные устройства, генераторные установки) как в нормальных, так и в аварийных условиях. Ранее эту функцию выполняли переключатели и предохранители, расположенные последовательно с цепью. Однако такое средство контроля имеет два недостатка. Во-первых, когда предохранитель перегорает, требуется довольно много времени, чтобы заменить его и восстановить подачу тока. Во-вторых, предохранитель не может качественно прерывать сильные токи замыкания, возникающие в результате неисправностей в современных цепях высокого напряжения.

С развитием энергосистемы, требуется использование более надежных средств защиты, таких как автоматические выключатели. Данный прибор может замыкать или размыкать цепь вручную или автоматически при любых условиях, в том числе во время короткого замыкания.

Автоматический выключатель

Принцип работы автоматического выключателя

Автоматический выключатель состоит из неподвижных и подвижных контактов, называемых электродами. При нормальных условиях работы, эти контакты остаются замкнутыми и не будут автоматически открываться до тех пор, пока система не выйдет из строя. Конечно, контакты могут быть открыты вручную или с помощью пульта дистанционного управления, когда это необходимо. При возникновении неисправности в какой-либо части системы, отключающие катушки выключателя срабатывают автоматически, а движущиеся контакты раздвигаются механизмом, тем самым размыкая цепь.

Когда контакты автоматического выключателя разъединяются в условиях неисправности, между ними возникает электрическая дуга. Таким образом, ток может проходит до тех пор, пока разряд не прекратится. Появление дуги не только задерживает процесс прерывания тока, но и генерирует огромное количество тепла, которое может привести к повреждению системы или самого выключателя. Поэтому основная задача автоматического выключателя состоит в том, чтобы погасить дугу в кратчайшие сроки, дабы выделяемое тепло не достигло опасного значения. Это основной принцип работы автоматического выключателя.

Автомат

Зачем нужен этот прибор

Автоматические выключатели выполняют три основные задачи:

  • они должны проводить ток максимально эффективно, когда отключены;
  • будучи включенными, они должны надежно изолировать контакты друг от друга;
  • в случае короткого замыкания, устройства должны отключать ток как можно быстрее и надежнее, тем самым защищая все последующее оборудование.

Почему важно проверять устройство

Автоматический выключатель может простаивать годами, но при возникновении короткого замыкания он должен тут же, в течение нескольких миллисекунд, защитить электрические цепи. Основными ошибками, возникающими в приборах, являются: неправильное соединение, короткие замыкания в катушках, повреждение/износ механических соединений или изоляционного материала. Поэтому автоматы должны регулярно и тщательно проверяться на исправность работы.

Читайте так же:
Диодная лента 220 выключатель

Автоматический выключатель

Автоматические выключатели выполняют жизненно важную роль в защите дорогостоящего оборудования от повреждений из-за неисправностей, то есть надежно подключают и отключают электроэнергию. Это требует подтверждения их надежности с помощью полевых испытаний во время монтажа и регулярных эксплуатационных испытаний в течение всего срока службы, чтобы предотвратить неполадки и проблемы, которые могут поставить под угрозу безопасность подстанции. Поэтому регулярное тестирование производительности является важной и экономически эффективной частью любой стратегии технического обслуживания.

Как определить, что автоматический выключатель неисправен

Автоматический выключатель может испортиться преждевременно, например, из-за летней жары. Если это произойдет, устройство перестанет сработать, даже если через эту цепь проходит слишком много электричества. Проще говоря, возникнет серьезная проблема, потому что она может в конечном итоге привести к пожару в доме. Стоит отметить, что в домашних условиях можно только визуально проверить устройство. Тесты и замену стоит предоставить профессионалам.

Причины выхода устройства из строя:

  1. Короткое замыкание. Обычно возникает, когда некоторые провода случайно соприкасаются.
  2. Перегрузка электрической цепи. Прибор пропускает больше тока, чем предусмотрено производителем.

Типичные признаки неисправного автомата:

  • запах гари в щитке, исходящий от электрического оборудования;
  • прибор горячий на ощупь;
  • видны сгоревшие детали, оборванные провода и явные признаки износа.

Короткое замыкание

Если при проверке автоматического выключателя наблюдается какой-либо из вышеперечисленных признаков, значит пришла пора вызывать электриков с просьбой замены устройства.

Этапы заводского тестирования автоматических выключателей

Типовые испытания организуются с целью проверки возможностей и обеспечения точной номинальной характеристики автоматического выключателя. Такие испытания проводятся в специально построенной испытательной лаборатории в соответствие с ПУЭ.

Механическое испытание — это испытание типа механической способности, включающее повторное отключение и включение устройства. Автоматический выключатель должен закрываться и открываться с надлежащей скоростью, и выполнять свою работу и функцию без каких-либо сбоев.

Механическое испытание

Тепловые испытания проводятся для проверки теплового поведения автоматов. Из-за протекания номинального тока через его полюс в номинальном состоянии, испытуемый выключатель подвергается установившемуся повышению температуры. Повышение температуры для номинального тока не должно превышать 40 °C.

Диэлектрические испытания. Эти тесты проводятся для проверки мощности частоты и импульсного напряжения выдерживаемой емкости. Испытания частоты мощности проводятся на новом устройстве. Испытательное напряжение изменяется с номинальным напряжением выключателя. При импульсных испытаниях на выключатель подается импульсное напряжение определенной величины. Для наружного контура проводятся сухие и влажные испытания.

Испытание на короткое замыкание. Электроустановка подвергается внезапным коротким замыканиям в испытательных лабораториях, и осциллограммы используются, чтобы знать поведение автоматических выключателей во время включения, во время разрыва контакта и после гашения дуги. Осциллограммы изучаются с особым учетом токов возбуждения и размыкания, как симметричных, так и несимметричных напряжений рестрикции, а распределительное устройство иногда испытывается в номинальных условиях.

Регламент испытания автоматического выключателя

Плановые испытания проводятся на основании и со стандартами ПУЭ. Эти тесты проводятся на территории завода-изготовителя. Обычные и плановые испытания подтверждают правильность функционирования автоматического выключателя. Некоторые руководящие принципы и рекомендации по этим испытаниям включают регулярное техническое обслуживание и проверку того, что производительность автоматического выключателя соответствует калибровочным кривым производства. Крайне важно, чтобы испытания автоматических выключателей проводились в стабильных условиях при подходящей температуре, чтобы не было никаких отклонений в данных.

Профилактическое обслуживание автомата защиты цепи, осмотр и испытание

Профилактическое обслуживание зависит от условий эксплуатации. Первичные проверки будут направлены на выявление твердых частиц, загрязняющих внутреннюю работу устройства. Накопление твердых частиц обычно можно утилизировать, щелкнув на выключателе «Выкл» и «Вкл», чтобы очистить накопившуюся пыль.

Профилактическое обслуживание

Испытание отключения автоматического выключателя

Анализируя ток, потребляемый катушкой отключения во время работы выключателя, можно определить, имеются ли механические или электрические проблемы. Во многих случаях такие проблемы могут быть локализованы, и с помощью них можно найти первопричину.

Испытание сопротивления изоляции

Для испытания сопротивления выключателя, проводники нагрузки и линии должны быть предварительно отключены. Если их не отсоединить, то тестовые значения будут также включать характеристики подключенной цепи. Испытание на сопротивление имеет решающее значение для проверки того, что изоляционный материал работает корректно. Для проверки сопротивления изоляции используется прибор, известный как мегаомметр. Прибор подает напряжение постоянного тока на провод в течение заданного периода времени, чтобы проверить сопротивление внутри изоляции на конкретном проводе или обмотке. Следует также отметить, что если включить напряжение, которое слишком высоко для того, чтобы эта изоляция выдержала, то потенциально можно повредить изоляцию.

Испытания соединения

Проверка соединения важна для того, чтобы убедиться в наличии соответствующего электрического соединения и распознать следы перегрева. Важно, чтобы электрические соединения были установлены по правилам — это предотвращает и уменьшает перегрев.

Читайте так же:
Автоматический выключатель автомат устройство

Испытание контактного сопротивления

Нормальный износ контактов возникает после длительного использования. Простой способ определить следы ослабления внутри выключателя — это оценить сопротивление на каждом полюсе. Признаки аномальных отклонений внутри устройства, таких как эрозия и загрязнение контактов, очевидны, если на выключателе имеются чрезмерные падения милливольт. Проверка контактного сопротивления важна для определения того, пригоден ли прибор к работе.

Испытание контактного сопротивления

Испытание на срабатывание при перегрузке

Компоненты отключения от перегрузки можно проверить, введя 300 % номинальной мощности выключателя в каждый полюс автоматического выключателя, чтобы определить, будет ли он автоматически реагировать на срабатывание. Цель состоит в том, чтобы убедиться, что автоматический выключатель работает корректно.

Как проводится прогрузка автоматического выключателя

В современной электронике используются различные устройства для проверки автоматических выключателей. Также проверка проводится с помощью разных методов тестирования и типов тестеров. При выполнении прогрузки делается частичный демонтаж прибора, а по окончанию тестов — возврат выключателя на место.

Чтобы начать проверку, требуется глубокое знание самого устройства, а именно надо:

  • понимать, как оно работает;
  • ознакомиться с ПУЭ;
  • знать исходные значения предыдущих тестов;
  • иметь начальные значения, с которыми сравниваются фактические результаты;
  • иметь установленные настройки или начальные характеристики, заданные производителем.

Для тестов используются специальные устройства, например, анализатор, микроомметр, а для проверки автоматических выключателей напряжением до 1000 В — СИНУС-1600 или Сатурн-М.

Прогрузка с помощью анализатора автоматических выключателей

Испытание с помощью анализатора — это эффективный способ проверки выключателя. Тестер анализирует не только время срабатывания, но и существенную синхронность полюсов в различных операциях. Это показывает время открытия или закрытия каждого полюса в одиночных или комбинированных операциях, а также проверяет возможную разницу между полюсами или время рассогласования, которое может привести к опасному отсутствию синхронизации.

Испытание с помощью анализатора

Способ тестирования автоматического выключателя с помощью анализатора может выявить и дополнительные проблемы, что приводит к проверке других характеристик, таких как время сопротивления, время хода, время скорости, состояние катушек и механический анализ.

Прогрузка с помощью микроомметра

Автоматические выключатели обычно несут огромную величину тока. Большее контактное сопротивление вызывает большие потери и низкую пропускную способность тока, также высокую температуру. Так что тестирование сопротивления с помощью микроомметров является другим способом проверки прибора для выявления и предотвращения предстоящих проблем.

Прогрузка с помощью микроомметра

Синус-1600

Синус-1600 — достаточно функциональный прибор для испытаний, причем он безопасен и прост в эксплуатации. Его применение эффективно и рационально при предъявлении к форме испытательного тока повышенных требований относительно параметра нелинейных искажений.

Синус-1600

Сатурн-М

Сатурн-М применяется для прогрузки автоматических выключателей с тепловыми и электромагнитными расцепителями. Применяется также и в лабораторных условиях в целях контроля тока, протекающего по прибору.

Что такое ограничитель импульсного напряжения и где он применяется: описание и технические характеристики

прибор

Все электрические установки, имеющие воздушный ввод, обязаны быть оборудованы специальным приспособлением, который называется ограничитель импульсного напряжения. Об этом указано в пункте 7.1.22 Правил устройства электроустановок. Устанавливать их необходимо в ВРУ/ВУ.

Главным предназначением данного устройства является гашение скачков высокого напряжения и компенсация импульсную энергию.

Сегодня в нашей статье мы поговорим о том, что собой представляет этот импульсный прибор, для чего он необходим, а также правилах его подключения.

Как работает и для чего служит

импульсного

Основным предназначением импульсного устройства является защита электрических сетей с бытовым (220 В) и промышленным (380 В) напряжением. Эти два вида принято считать стандартными. Возникнуть перепады тока могут после грозы, сопровождающейся ударами молнии.

Именно по причине разрядов молнии в грунте и появляется разность в потенциалах. Также существуют коммутационные скачки, возникающие в электрической сети.

Возникнуть такие скачки могут в результате одновременного включения приборов в агрегате, а также включения или отключения различных приборов очень большой мощности.

Что же касается коммутационных скачков тока, они могут возникать при старте конденсаторного оборудования, одновременном запуске насосов, а также старте электрического оборудования с очень мощными двигателями.

импульсного

В чём заключается принцип работы импульсного устройства? Внутри данного приспособления находятся полупроводниковые резисторы, которые носят название варисторы. Принцип действия этих варисторов схож с принципом действия используемых ранее разрядников (специальных ограничителей перепадов напряжения в сети).

По этой причине устанавливать прибор импульсного тока необходимо строго параллельно электросети, которой требуется защита.

Срабатывает он в тех ситуациях, когда напряжение варистора падает, а ток в электрической сети его превышает. В этом случае происходит замыкание провода, тем самым защищая включенное в сеть оборудование.

Где применяется

импульсного

Далее мы поговорим о сферах применения ограничителя. Данное устройство получило достаточно широкое использование. Устанавливают его, как правило, в ящики учёта приборов, а также в вводные щитки.

Читайте так же:
Дистанционный аварийный выключатель двигателя

Дабы обезопасить счётчик учёта электроэнергии от перенапряжения, ограничитель следует устанавливать непосредственно до него. Ниже мы поговорим о том, как правильно подключить ограничитель импульсного напряжения в щиток.

При строительстве своего дома и последующей необходимости обеспечения его и участка электричеством обязательным условием будет наличие защитного устройства, предохраняющего от импульсных скачков напряжения.

Но, как указано в Правилах устройства электроустановок, обычно такое требование предъявляется в тех ситуациях, когда осуществляется воздушный ввод кабеля.

В сопроводительной документации к ограничителю импульсного напряжения указано, что в электросети с одной фазой рекомендуют использовать заземление типа TN-S, а в трёхфазной сети — заземление типа TN-C-S.

Параметры

Любое электрическое устройство или техника обладает документацию, в которой содержится описание их параметров и характеристик. И ограничитель импульсного напряжения не является исключением. Данное устройство обладает следующими параметрами:

  1. Имеет рабочую частоту, равную 50 Гц, при которой способен поддерживать напряжение в 275 В на протяжении длительного времени.
  2. Монтируется на специальной металлической пластинке.
  3. Имеет ту же ширину, что и автомат с одним полюсом, равную 1,75 см.
  4. При напряжении в 275 В потребляемый ограничителем ток составляет 0,7 мА.
  5. Поскольку устройство соответствует ГОСТу, что подтверждается наличием сертификатов соответствия, при Iкз равному 5 кА, максимальное значение импульсов, которое может выдерживать данное устройство, составляет 10 000 В.
  6. Существует разновидность ограничителя импульсного напряжения (1С), имеющая специальный световой индикатор, который символизирует о наличии или отсутствии в электросети напряжения.
  7. Клеммные колодки устройства дают возможность подсоединять проводящие ток жилы, имеющие сечение в диапазоне от 4 до 16 мм.

Подключение в щитке ограничителя

Сегодня на рынке электротоваров представлено очень большое количество ограничителей импульсного напряжения от разных производителей. Но поскольку принцип действия у них всех абсолютно одинаков, то и подключение их тоже является аналогичным.

Можно подключать параллельно и последовательно с использованием специального разъединителя. Следовательно, в ситуациях срабатывания устройства, для обеспечения защиты техники от возгорания и выхода тока по дуге, при помощи разъединителя происходит размыкание цепи.

При использовании трёхфазной электрической цепи, в которой используются заземлители типа TN-S или типа TN-C-S, устанавливать ограничитель необходимо между нулевой фазой и заземлением.

Для обеспечения дополнительной защиты электросети, допускается установка ограничителя и после счётчика.

Важный момент из официальной инструкции

В нашей статье мы обсудили, что собой представляет ограничитель импульсного напряжения и как правильно его устанавливать. Но также следует акцентировать особое внимание на следующей вытяжке из официальной инструкции, в которой говорится о следующем:

инструкция

Здесь имеется в виду установка автомата перед ОИН-1 в разрыв кабеля питания. Это необходимо для разрыва цепи и предотвращения печальных последствий внезапно возникшего короткого замыкания.

Время токовая характеристика

Электрический ток обладает одной отличительной чертой: он способен протекать только по замкнутому контуру. Если же эту цепь разорвать, то его действие сразу прекращается. Это свойство нашло воплощение в работе максимальных токовых защит, основанных на использовании предохранителей и автоматических выключателей.

Они подбираются таким образом, чтобы могли длительное время выдерживать номинальное значение протекающего через них тока. Этим обеспечивается надёжность электроснабжения потребителей. В то же время предохранители и автоматические выключатели обладают защитными функциями: во время возникновения аварийных режимов в контролируемой схеме они разрывают проходящий через них опасный ток.

При этом в комплексе учитываются два фактора:

  1. величина протекающего тока нагрузки
  2. продолжительность его воздействия

Плавкая вставка предохранителя перегорает от теплового воздействия, созданного проходящим по ней током.

Автоматический выключатель тоже учитывает температурный перегрев схемы и размыкает свои силовые контакты за счет работы теплового расцепителя. В то же время в его составе имеется еще одно устройство — электромагнитный расцепитель, который реагирует на превышение электромагнитной энергии, возникающей даже в импульсном режиме.

Подробнее про устройство, принцип действия и особенности эксплуатации автоматических выключателей и предохранителей рассказано здесь:

О работе всех этих устройств судят по определенным техническим характеристикам, которые принято называть время токовыми потому, что они точно определяют время срабатывания защит, учитывая его зависимость от кратности превышения тока аварийного режима относительно номинального состояния.

Время токовая характеристика (ВТХ) выражает графиками в декартовых координатах. По оси ординат располагают время, отсчитываемое в секундах, а абсцисс — отношение протекающего тока аварийного режима I к номинальной величине Iн коммутационного аппарата.

Для чего создается защитная характеристика у плавкой вставки

В целях правильной работы предохранителя внутри электрической схемы необходимо учитывать его:

  • технические возможности
  • условия проверок
  • назначение

Основные параметры защитной характеристики предохранителя

График срабатывания предохранителей при различных токах выражается кривой линией, разделяющей рабочее пространство координат на две части:

  1. рабочую область, в которой плавкая вставка остается целой и надежно обеспечивает протекание тока по защищаемой схеме
  2. зону протекания токов предельного отключения, в которой происходит разрыв электрической цепи
Читайте так же:
Выключатель кнопочный ке 141 исп 3

Первая часть на графике показана светло-зелёным цветом, а вторая выделена бежевым.

Время токовая характеристика

Защитная характеристика плавкой вставки предохранителя

Защитная характеристика у плавкой вставки лежит на границе этих двух зон. В пространстве рабочих токов предохранитель остается целым, а при увеличении их значений выше критического состояния перегорает.

Зона токов предельного отключения опасна для оборудования и должна быть отключена максимально быстро.

Защитная характеристика плавкой вставки выражает продолжительность отрезка времени от начала создания аварийного режима до момента его отключения, представленную в зависимости к превышения величины опасного тока над номинальным значением предохранителя.

Плавкая вставка характеризуется тремя видами токов:

  1. номинальным, который она способна выдерживать практически неограниченное время
  2. минимальным испытательным, под действием которого может проработать более одного часа
  3. максимальным испытательным, которое вызывает ее перегорание менее чем за один час

Плавкая вставка предохранителя защищает подключенную к ней схему от двух видов аварийных режимов:

  1. перегрузов повышенными нагрузками, которые отключаются с задержкой
  2. коротких замыканий — КЗ, требующих максимально быстрой ликвидации

Все эти режимы и виды токов учитываются при выборе предохранителя и плавкой вставки. Для этого разработаны математические соотношения, преобразованные графиками и таблицами в удобной форме.

Как создается защитная характеристика предохранителя

Плавкая вставка способна работать защитой только один раз. После этого она сгорает. Поэтому ее характеристику можно создать только косвенным путем.

Для этого на заводе выбирают случайным образом определённое количество образцов из каждой партии готовой продукции. Их используют для проведения дальнейших электрических испытаний под действием различных токов. По их результатам составляют таблицы и графики, которые позволяют судить о качестве выпущенной серии предохранителей.

Назначение защитной характеристики предохранителя

Плавкая вставка оценивается электрическими параметрами для решения чисто практической задачи: обеспечения правильного ее выбора по рабочим и защитным свойствам.

Для этого учитывают:

  • величину рабочего напряжения схемы, в которой должен работать предохранитель
  • предельный отключаемый ток у плавкой вставки, способный ее разорвать (отключить)
  • значение номинального тока предохранителя с учетом коэффициентов его нагрузки и отстройки от перегрузок.

Без использования защитной характеристики плавкой вставки правильно выбрать предохранитель для его надежной работы в электрической схеме невозможно.

Как работает время токовая характеристика у автоматического выключателя

На выбор время токовой характеристики оказывают влияние:

  • конструктивные особенности встроенных защит
  • конфигурация выбранного графика

Влияние конструкции защит автомата на форму его характеристики срабатывания

Обеспечением защитных свойств в автоматическом выключателе занимаются два встроенных устройства, работающие по принципам реле прямого действия. Они расцепляют силовые контакты автомата при превышении номинальных значений по критериям ограничения:

  1. тепловой нагрузки
  2. электромагнитного воздействия

Биметаллическая пластина теплового расцепителя воспринимает нагрев проводов обмотки. При его превышении она изгибается, выводя из удержания узел сцепления.

Время токовая характеристика

Принцип работы теплового расцепителя

Под действием усилия натяжения пружины поворачивается освобожденное от удержания подвижное коромысло, а его силовые контакты разрывают цепь питания.

У электромагнитного расцепителя отключение силовых контактов происходит за счет выбивания удерживающего рычага пружины ударом толкателя, которое происходит под воздействием тока аварийного режима.

Время токовая характеристика

Принцип работы электромагнитного расцепителя

В отличие от предохранителя с перегораемой плавкой вставкой оба этих устройства созданы для многоразового использования. Они позволяют оперативно восстанавливать отключения схемы после предотвращения ненормальных ситуаций.

Работа теплового расцепителя и электромагнитной отсечки входит в алгоритм отключения автоматического выключателя и комплексно учитывается при его срабатывании во время токовой характеристике.

Поскольку температура окружающей среды и биметаллической пластины влияют на скорость работы защит, то все измерения принято проводить при +30 градусах Цельсия.

График время токовой характеристики для автоматического выключателя представляет собой сложную линию, выделенную буквами АВС. Верхний участок АВ соответствует работе теплового расцепителя, а его нижняя часть ВС — электромагнитной отсечке.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Время токовая характеристика, основные параметры графика

Учет влияния температуры

В отличие от защитной характеристики плавкой вставки предохранителя у автоматического выключателя график ВТХ представлен двумя линиями:

  1. верхней, учитывающей срабатывание защит непосредственно из холодного состояния +30 О С
  2. нижней, созданной после повторного включения, когда конструкция автомата не успела остыть

Зона между этими двумя крайними графиками выделена цветом. При работе автоматического выключателя следует учитывать, что он может находиться где-то внутри показанной зоны. В этом случае время отключения аварийных токов несколько сокращается в прогретом состоянии и увеличивается в холодном. За счет этого создается разброс параметров срабатывания.

Температура конструктивных элементов может оказывать значительное влияние на время срабатывания автомата. Особенно актуальным это становится при проведении электрических проверок, требующих нескольких измерений. Для их повторов необходимо обеспечивать время на остывание защит до +30 градусов.

Читайте так же:
Можно ли установить один проходной выключатель

Деление ВТХ на зоны

Автоматические выключатели строго разделяют по зонам время токовой характеристики для выделения эксплуатационных областей:

  • внутри первой должно обеспечиваться надежное протекание рабочих токов
  • а во второй — происходить отключения аварийных режимов

Линия токов условного нерасцепления

С целью обозначения первой области на оси абсцисс графика выбрано значение 1,13 I/I ном. Его называют точкой условного нерасцепления. Ниже этих токов отключение автоматического выключателя не должно происходить.

При ее достижении автоматические выключатели с номинальным значением токов до 63 ампер должны отключаться через 1 час, а с большими номиналами — через два.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Местоположение точки условного расцепления в обязательном порядке указывается на графике ВТХ.

Линия токов условного расцепления

Точка на оси абсцисс с величиной 1,45 I/I ном — это второе граничное значение зоны токов условного расцепления и нерасцепления силовых контактов.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Точка 1,45 I/I ном характеризует токи условного расцепления, она тоже обозначается на всех графиках ВТХ. При достижении подключенной к автомату нагрузки такой величины он должен отключиться за время:

  • меньшее, чем 1 час, если его номинал до 63 ампер
  • не дольше двух часов, когда номинальный ток превышает эту величину в 63 ампера

Вышеприведённый график показывает, что у выбранного автоматического выключателя время отключения аварийного режима из холодного состояния составляет 1 час, а при его нагреве может уменьшиться вплоть до 40 секунд.

Практическое применение параметров ВТХ

Анализ использования время токовой характеристики автоматических выключателей по токам условного расцепления силовых контактов позволяет учитывать длительность протекания перегрузок в подключенной электрической схеме. Это важно делать потому, что они могут повредить оборудование.

Например, при выборе автомата с номиналом на 16 ампер и нахождении его в холодном состоянии ток условного расцепления в 1,45∙16=23,2 ампера будет действовать на подключенную электропроводку в течение одного часа. Этого времени вполне достаточно для того, чтобы перегреть изоляцию медных проводов сечением 1,5 мм кв и вывести ее из строя, создать условия для возникновения пожара. А случаи защиты таких жил, да и алюминиевых на 2,5 мм кв, подобными автоматами еще часто встречаются на практике.

Чтобы исключить подобные ситуации рекомендуется внимательно анализировать время токовую характеристику автоматических выключателей применительно к подключенной к ним нагрузке. Для облегчения их выбора создана таблица соответствия номинальных токов и площадей поперечного сечения медных жил кабелей и проводов.

Время токовая характеристика

Таблица выбора автоматических выключателей по номинальному току и сечению жил кабельной линии

Производители автоматических выключателей всю свою продукцию проверяют на соответствие с принятыми стандартами. Основные требования к автоматам изложены в ГОСТ Р 50345—2010. Однако на некоторых участках время токовые характеристики у каждого завода могут незначительно отличаться. Эту особенность необходимо учитывать при выборе определенной модели и ее проверках.

Типы время токовых характеристик автоматических выключателей

Защиты автоматов могут создаваться с различным назначением для условий эксплуатации. По этим показателям графики их ВТХ обладают разными границами срабатывания по времени. Это позволяет их отстраивать по селективности, избегать ложных отключений оборудования. Автоматические выключатели выпускаются для бытового или промышленного использования.

Время токовая характеристика

Виды время токовых характеристик автоматических выключателей

Бытовые автоматы классифицируют тремя группами В, С и D:

  1. класс В предназначен для защиты протяженных линий и систем освещения. Кратность токов для его срабатывания лежит в пределах 3÷5 Iном
  2. класс С защищает розеточные группы или оборудование, создающее умеренные пусковые токи. Кратность токов 5÷10 Iном
  3. класс D применяют для защиты потребителей, обладающих повышенными пусковыми токами, например, трансформаторов или станков с мощными асинхронными электродвигателями. Кратность токов 10÷20 Iном

Автоматические выключатели типа В являются более чувствительными. Ими принято защищать оконечные потребители внутри квартир и домов. А в качестве вводного автомата лучше устанавливать те, которые относятся к типу С.

Качество состояния электропроводки и величина сопротивления петли фаза-ноль может влиять на выбор автоматического выключателя. Старая изоляция с высоким содержанием токов утечек и завышенными показателями петли способны ухудшить условия срабатывании автомата типа С или привезти к его отказу. В таких ситуациях применяют класс В.

Промышленные автоматы классифицируют тремя группами:

  1. класс L — более 8 Iном
  2. класс Z — более 4 Iном
  3. класс K — более 12 Iном

Среди производителей стран Европы встречаются модели автоматов с классом А, который имеет границу кратности токов 2÷3 Iном.

Все эти особенности необходимо учитывать при выборе конструкции автоматического выключателя и его проверках. Автоматы, обозначенные одним и тем же номиналом, в зависимости от типа время токовой характеристики, обладают разными временами срабатывания.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector