Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диэлектрики для изоляторов

Диэлектрики для изоляторов

Диэлектрик как вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике. Способность диэлектрика поляризоваться во внешнем электрическом поле. Тепловое старение внутренней изоляции, снижение прочности.

РубрикаФизика и энергетика
Видреферат
Языкрусский
Дата добавления03.10.2013
Размер файла14,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Изоляция электрических установок разделяется на внешнюю и внутреннюю.

К внешней изоляции установок высокого напряжения относят изоляционные промежутки между электродами (проводами линий электропередачи (ЛЭП), шинами распределительных устройств (РУ), наружными токоведущими частями электрических аппаратов и т.д.), в которых роль основного диэлектрика выполняет атмосферный воздух. Изолируемые электроды располагаются на определенных расстояниях друг от друга и от земли (или заземленных частей электроустановок) и укрепляются в заданном положении с помощью изоляторов.

К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция как правило представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).

В данной работе были рассмотрены диэлектрики для изоляторов и тепловое старение внутренней изоляции.

1. Диэлектрики для изоляторов

Диэлектрики, из которых изготавливаются изоляторы, должны обладать высокой механической прочностью, поскольку изоляторы, являясь элементом конструкции, несут значительную нагрузку. Так к примеру изоляторы линий электропередачи несут нагрузку от натяжения проводов, исчисляемую тоннами, а иногда и десятками тонн. Опорные изоляторы, на которых крепятся шины распределительных устройств, выдерживают громадные нагрузки от электродинамических сил, возникающих между шинами при коротких замыканиях.

Диэлектрики должны иметь высокую электрическую прочность, позволяющую создавать экономичные и надежные конструкции изоляторов. Нарушение электрической прочности изолятора может происходить или при пробое твердого диэлектрика, из которого он изготовлен, или в результате развития разряда в воздухе вдоль внешней поверхности изолятора. Пробой твердого диэлектрика означал бы выход изолятора из строя, тогда как разряд по поверхности при условии быстрого отключения напряжения не причиняет изолятору никаких повреждений. Поэтому пробивное напряжение твердого диэлектрика в изоляторе должно быть (и всегда делается) примерно в 1,5 раза более высоким, чем напряжение перекрытия по поверхности, которым и определяется электрическая прочность изолятора.

Диэлектрики должны быть негигроскопичны (не впитывать влагу) и не должны изменять своих свойств под действием различных метеорологических факторов. При неблагоприятных условиях (дождь, увлажненные загрязнения) на поверхностях изоляторов, устанавливаемых на открытом воздухе (изоляторов наружной установки), могут возникать частичные электрические дуги. Под их действием поверхность может обугливаться и на ней могут появляться проводящие следы — треки, снижающие электрическую прочность изоляторов. Поэтому диэлектрики для изоляторов наружной установки должны обладать высокой трекингостойкостю.

Всем указанным требованиям в наибольшей степени удовлетворяют глазурованный электротехнический фарфор и стекло, получившие широкое распространение, а также некоторые пластмассы.

Электрическая прочность фарфора в однородном поле при толщине образца 1,5 мм составляет 30—40 кВ/мм и уменьшается при увеличении толщины. Электрическая прочность стекла при тех же условиях — 45 кВ/мм.

Механическая прочность фарфора и стекла зависит от вида нагрузки. Например, прочность фарфоровых образцов диаметром 2—3 см составляет при сжатии 450 МПа, при изгибе — 70 МПа, а при растяжении — всего 30 МПа. Поэтому наиболее высокой механической прочностью обладают изоляторы, в которых фарфор работает на сжатие.

Стекло по механической прочности не уступает фарфору и тоже лучше всего работает на сжатие. Стеклянные изоляторы в процессе изготовления подвергаются закалке: нагреваются до температуры примерно 700 0 С и затем обдуваются холодным воздухом. Во время закалки наружные слои стекла твердеют значительно раньше внутренних, поэтому при последующей усадке внутренних слоев в толще стекла образуются растягивающие усилия. Такая предварительно напряженная конструкция имеет высокую прочность на сжатие.

Изоляторы из закаленного стекла имеют ряд преимуществ перед фарфоровыми: технологический процесс их изготовления полностью автоматизирован; прозрачность стекла позволяет легко обнаружить при внешнем осмотре мелкие трещины и другие внутренние дефекты; повреждение стекла приводит к разрушению диэлектрической части изолятора, которое легко обнаружить при осмотре линии электропередачи эксплуатационным персоналом.

Полимерные изоляторы наружной установки изготовляются из эпоксидных компаундов на основе циклоалифатических смол, из кремнийорганической резины, из полиэфирных смол с минеральным наполнителем и добавкой фторопласта. Такие изоляторы имеют высокую электрическую прочность и достаточную трекинг стойкость. Высокая механическая прочность полимерных изоляторов достигается посредством армирования их стеклопластиком. Применение полимерных изоляторов на линиях электропередачи позволяет существенно уменьшить массу подвесных изоляторов. В закрытых помещениях изоляторы не подвержены влиянию атмосферных осадков, поэтому для их изготовления в некоторых случаях используется бакелизированная бумага. Для уменьшения гигроскопичности такие изоляторы покрываются снаружи водостойкими лаками. Однако наибольшее распространение для внутренней установки получили изоляторы из фарфора и стекла, отличающиеся от изоляторов наружной установки более простой формой.

Читайте так же:
Аккумулятор 220в с розеткой типа

Поскольку перекрытие изоляторов происходит в результате развития разряда в воздухе вдоль поверхности, на разрядные напряжения изоляторов оказывают влияние те же факторы, которые влияют на разрядные напряжения воздушных промежутков, т. е. давление, температура и абсолютная влажность воздуха. Помимо этого на разрядные напряжения изоляторов влияет состояние их поверхности. Условия развития разряда по поверхности изоляторов наружной установки существенно изменяются, если на их поверхностях имеются увлажненные загрязнения или же они смачиваются дождем. Тогда разрядные напряжения значительно уменьшаются. В связи с этим по существующей методике испытанные изоляторы подвергаются воздействию сухоразрядного, мокроразрядного и влагоразрядного напряжений.

Сухоразрядные напряжения определяются при сухой и чистой поверхности изоляторов и приводятся к нормальным атмосферным условиям. При измерениях мокроразрядных и влагоразрядных напряжений искусственный дождь и увлажненные загрязнения создаются по стандартным методикам. Это обеспечивает возможность сопоставления результатов, полученных в разное время или в разных лабораториях, и объективность оценки изоляторов различной конструкции.

2. Тепловое старение внутренней изоляции

диэлектрик электрическое поле изоляция

При рабочих температурах (60-130°С) в диэлектрических материалах возникают или резко ускоряются химические реакции, которые приводят к постепенному изменению структуры и свойств материалов — к ухудшению свойств всей изоляции в целом. Эти процессы именуют тепловым старением.

Для твердых диэлектриков наиболее характерным является постепенное снижение механической прочности в процессе теплового старения. со временем это приводит к повреждению изоляции под действием механических нагрузок и затем уже к пробою.

В жидких диэлектриках в результате теплового старения образуются газообразные, жидкие и твердые продукты реакций. По мере накопления этих продуктов, загрязняющих изоляцию, проводимость и диэлектрические потери растут, а электрическая прочность снижается.

В комбинированной внутренней изоляции, содержащей жидкие и твердые материалы, тепловое старение влечет за собой как снижение механической прочности соответствующих элементов, так и ухудшение электрических характеристик всей изоляции.

Темпы теплового старения внутренней изоляции определяются скоростями химических реакций, зависящими от температуры в соответствии с уравнением Аррениуса:

где v — скорость химической реакции.

Срок службы изоляции при тепловом старении обратно пропорционален скорости химических реакций. При разных температурах T1 и T2 отношения сроков службы изоляции:

где DТ — повышение температуры, вызывающее сокращение срока службы изоляции при тепловом старении в 2 раза.

Значение DТ для разных видов внутренней изоляции лежит в пределах от 8 до 12°С и в среднем составляет 10°С.

Старение изоляции при механических нагрузках

Под действием механических нагрузок в материалах происходят медленные процессы старения, имеющие место даже тогда, когда нагрузки значительно меньше разрушающих, а деформации носят упругий характер. В этом случае в напряженном материале возникает упорядоченное движение локальных дефектов (на молекулярном уровне) и за счет этого образуются и постепенно увеличиваются в размерах микротрещины. Когда количество и размеры микротрещин достигают некоторых критических значений, наступает разрушение.

Процесс старения в твердой изоляции при одновременном воздействии механических нагрузок и сильных электрических полей может значительно ускоряться из-за того, что в образующихся в изоляции микротрещинах возникают ЧР, которые повышают темпы разрушения изоляции.

Увлажнение как форма старения изоляции

Влага проникает во внутреннюю изоляцию главным образом из окружающего воздуха. В некоторых случаях она может образовываться в самой изоляции в результате термоокислительных процессов. В аварийных ситуациях влага может попадать в изоляцию из системы охлаждения и других устройств.

Появление влаги в изоляции приводит к резкому снижению сопротивления утечки, т.к. во влаге содержатся диссоциированные примеси. Растут диэлектрические потери. Снижается напряжение теплового пробоя. Происходит дополнительный нагрев изоляции, что влечет за собой ускорение темпов теплового старения.

При неравномерном увлажнении искажается электрическое поле в изоляции и снижается пробивное напряжение изоляции.

Влага может быть удалена из изоляции путем сушки. Изоляция некоторых видов оборудования (кабелей, вводов) сушке не поддается. В таких случаях увлажнение может рассматриваться как особая форма необратимого старения изоляции.

Допустимые рабочие нагрузки на внутреннюю изоляцию

Для ограничения интенсивности процессов старения необходимо ограничить уровень длительно действующих на изоляцию электрических, тепловых и механических нагрузок.

Для того, чтобы длительное воздействие рабочего напряжения не приводило к сокращению сроков службы изоляции, необходимо обеспечить отсутствие ЧР при рабочем напряжении. Отсюда следует основное условие выбора допустимых рабочих напряжений:

Размещено на Allbest.ru

Подобные документы

Диэлектрики (изоляторы) — вещества, практически не проводящие электрический ток. Физические свойства: потери и пробой диэлектрика, поляризация во внешнем электрическом поле. Пьезоэлектрики: кварц, пьезоэлектрические преобразователи; пироэлектрики.

контрольная работа [61,6 K], добавлен 15.06.2014

Изучение сути закона Кулона — закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

контрольная работа [27,3 K], добавлен 20.12.2012

Понятие и свойства полупроводника. Наклон энергетических зон в электрическом поле. Отступление от закона Ома. Влияние напряженности поля на подвижность носителей заряда. Влияние напряжённости поля на концентрацию заряда. Ударная ионизация. Эффект Ганна.

Читайте так же:
Как размножить эхеверию розетками

реферат [199,1 K], добавлен 14.04.2011

Способы модифицирования перфторированных мембран. Преимущества проведения синтеза полианилина в матрице в условиях внешнего электрического поля. Параметры, позволяющие провести экономическую оценку эффективности данных мембран в электрическом поле.

курсовая работа [124,4 K], добавлен 18.07.2014

Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

Диэлектрики в электрическом поле

ads

Диэлектрик (изолятор) — вещество, среда, материал, практически не проводящие электрический ток. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. Концентрация свободных носителей заряда в диэлектрике не превышает 10 8 см − 3 .

Рассмотрим подробнее процессы в диэлектрике, помещенном во внешнее электрическое поле, например, между разноименно заряженными электродами.

У одной группы диэлектриков, называемых неполярными, при отсутствии внешнего (основного) поля положительно и отрицательно заряженные частицы, входящие в молекулы (атомы), как бы уравновешивают друг друга (собственное поле отсутствует); молекулы их являются электрически нейтральными или неполярными (рис. 1, а). У таких диэлектриков под действием внешнего поля происходит смещение электрического центра отрицательных зарядов (электронов) навстречу направлению поля (рис. 1, б). С точки зрения электрических свойств такая молекула во внешнем поле может рассматриваться как диполь, т.е. пара разноименных точечных зарядов +q и -q (рис. 1,в), находящихся на небольшом расстоянии l друг от друга (плечо диполя). Заряды, образующие диполи диэлектрика, называют связанными, а произведение заряда q на плечо l называется электрическим моментом диполя:

p = ql

Электрический момент рассматривают как векторную величину p, направленную от отрицательного заряда диполя к положительному.

1

Рисунок 1 — неполярная молекула а) при отсутствии внешнего поля; б) при наличии внешнего поля; в) ее эквивалентный диполь

2

Рисунок 2 — Поляризованный диэлектрик

Таким образом, неполярные молекулы во внешнем поле становятся диполями, электрические моменты p которых стремятся расположиться в направлении внешнего поля, и диэлектрик поляризуется (рис. 2). При исчезновении внешнего поля смещение исчезают и молекулы снова становятся электрически нейтральными. Рассмотренная поляризация называется деформационной.

У каждой группы диэлектриков, называемых полярными, молекулы всегда полярны (электрические центры электронов и молекулах расположены несимметрично относительно ядер). Полярную молекулу можно считать диполем с зарядами +q и -q и моментом p = ql. При отсутствии внешнего поля все диполи расположены хаотически (рис. 3, а) и суммарный электрический момент диэлектрика равен нулю. При появлении внешнего поля его силы стремятся ориентировать диполи в направлении поля. В результате диполи несколько повернутся в направлении поля и диэлектрик приобретает электрический момент (рис. 3,6). Такая поляризация называется ориентационной.

При той или другой поляризации диэлектрика поле его диполей, или поле поляризации Eп (рис. 4.12), направлено

3

Рисунок 3 — Полярные молекулы

от положительных зарядов к отрицательным, т. е. противоположно внешнему полю Евн. Напряжённости результирующего поля E, равная алгебраической сумме напряженностей внешнего поля и поля поляризации, меньше напряженности внешнего поля, т. е.

Чем сильнее поляризуется диэлектрик, тем слабее результирующее поле, т. е. меньше его напряженность E при том же внешнем поле, а следовательно, тем больше его диэлектрическая проницаемость Er.

У диэлектрика, находящегося в периодически изменяющемся внешнем электрическом поле, смещение зарядов также будет периодическим, что вызывает нагревание диэлектрика. Чем с большей частотой изменяется внешнее поле, тем сильнее нагрев диэлектрика. Это явление применяется для нагрева и сушки влажных материалов, для получения или ускорения химических реакций, требующих повышенной температуры.

Мощность, идущая на нагрев диэлектрика при периодическом смещении зарядов диэлектрика (связанных зарядов) и отнесенная к единице объеме, называется удельными диэлектрическими потерями.

Диэлектрики Диэлектриками называются вещества, которые не проводят электрический ток


Диэлектриками называются вещества, которые не проводят электрический ток. Диэлектрики также называют изоляторами. В диэлектриках, в отличие от проводников, нет свободных носителей заряда – заряженных частиц, которые могли бы прийти под действием электрического поля в упорядоченное движение и образовать ток проводимости. Точнее, у диэлектриков концентрация свободных носителей заряда в раз меньше, чем у проводников.

При внесении диэлектрического стержня в однородное электростатическое поле, он будет поворачиваться, стремясь расположиться нормально силовым линиям поля. Если поле неоднородно, то стержень будет не только поворачиваться, но и втягиваться в область более сильного поля. Это поведение похоже на поведение металлического стержня. Однако если в момент нахождения в электростатическом поле стержень разделить пополам, то каждая часть будет вести себя также. Это поведение можно объяснить, допустив, что в диэлектрике возникают наведeнные заряды. Однако их нельзя снять. В отличие от свободных зарядов проводников, заряды диэлектриков являются связанными.

Все молекулы диэлектрика электрически нейтральны: суммарный заряд электронов и атомных ядер, входящих в состав молекулы, равен нулю. В первом приближении молекулу можно рассматривать как электрический диполь с дипольным электрическим моментом, , где q – суммарный положительный заряд всех атомных ядер в молекуле, а – вектор, проведeнный из «центра тяжести» электронов в молекуле в «центр тяжести» положительных зарядов атомных ядер. Как всякий электрический диполь, молекула создаeт электрическое поле.

Читайте так же:
Какая бывает вилка для розетки

Диэлектрик называется неполярным (диэлектриком с неполярными молекулами), если в отсутствие внешнего электрического поля «центры тяжести» положительных и отрицательных зарядов в молекуле этого диэлектрика совпадают и дипольные моменты молекул равны нулю (и другие). Во внешнем электрическом поле происходит деформация электронных оболочек атомов и молекул. «Центры тяжести» положительных и отрицательных зарядов смещаются друг относительно друга . Неполярная молекула при этом приобретает во внешнем электрическом поле индуцированный (наведeнный) дипольный электрический момент, пропорциональный напряжeнности поля :

где – поляризуемость молекулы, зависящая только от объeма молекулы. Неполярная молекула подобна квазиупругому диполю, длина плеча которого пропорциональна растягивающей силе, т.е. пропорциональна напряженности внешнего электрического поля. Тепловое движение неполярных молекул никак не влияет на возникновение у них индуцированных дипольных электрических молекул: векторы всегда совпадают по направлению с вектором , а поляризуемость не зависит от температуры.

Полярным диэлектриком (диэлектриком с полярными молекулами) называется такой диэлектрик, молекулы или атомы которого имеют электроны, расположенные несимметрично относительно атомных ядер ( и др.). В таких молекулах «центры тяжести» положительных и отрицательных зарядов не совпадают даже в отсутствие внешнего электрического поля. Молекулы полярных диэлектриков по своим свойствам подобны жестким диполям, у которых имеется постоянный (по модулю) электрический дипольный момент .

В однородном внешнем электрическом поле на жeсткий диполь действует пара сил, вращательный момент которой равен:

Если диполь находится в неоднородном поле, то на него кроме вращающего момента действует и результирующая сила:

Поляризация диэлектриков

Если полярный диэлектрик не находится во внешнем электрическом поле, то в результате теплового движения молекул векторы и дипольных моментов ориентированы хаотически, а сумма дипольных моментов всех молекул, содержащихся в любом макроскопически малом объеме диэлектрика, равна нулю.

В неполярном диэлектрике, не находящемся во внешнем электрическом поле, равны нулю дипольные моменты каждой отдельной молекулы.

При внесении диэлектрика во внешнее электрическое поле происходит поляризация диэлектрика, состоящая в том, что в любом малом его объеме возникает отличный от нуля суммарный дипольный момент молекул. Диэлектрик в таком состоянии называется поляризованным. В зависимости от строения молекул или атомов диэлектрика различают три типа поляризации:

а) Ориентированная поляризация полярных молекул.

При этом возникает преимущественная ориентация дипольных электрических моментов молекул вдоль поля, возрастающая с увеличением напряженности электрического поля и с уменьшением температуры.

б) Электронная (деформационная) поляризация неполярных диэлектриков. Под действием внешнего электрического поля возникают индуцированные дипольные моменты, направленные вдоль поля. Тепловое движение молекул не оказывает влияния на электрическую поляризацию.

в) Ионная поляризация, имеющих ионную кристаллическую решетку.

Количественной мерой поляризации диэлектрика служит вектор поляризованностью . Поляризованностью (вектором поляризации) называется отношение электрического дипольного момента малого объема диэлектрика к величине этого объeма:

где – электрический дипольный момент i-й молекулы, n – общее число молекул в объеме . Этот объем должен быть столь малым, чтобы в его пределах электрическое поле можно было считать однородным. Число молекул n в объем должно быть достаточно велико, для того, чтобы к ним можно было применить статистические методы исследования.

Для неполярного диэлектрика в электрическом поле напряженности :

где – концентрация молекул, – индуцированный дипольный момент одной молекулы, – относительная диэлектрическая восприимчивость вещества (безразмерная величина).

Для полярного диэлектрика в электрическом поле:

где – среднее значение вектора дипольного момента для всех молекул n, содержащихся в малом .

Для случая поляризации диэлектриков в слабых электрических полях:

причем , где k – постоянная Больцмана, Т – термодинамическая температура.

Эти формулы справедливы для электрически изотропных диэлектриков. Для них –скалярная величина, совпадает с направлением . Если диэлектрик анизотропен, то его – величина тензорная. Вектора и коллинеарны лишь в определенных направлениях .

Рассмотрим кусок однородного диэлектрика, имеющего форму косого параллелепипеда. Поместим его в однородное электрическое поле, направленное параллельно боковым ребрам. На основаниях параллелепипеда появятся поляризованные заряды с поверхностной плотностью . На боковых гранях поляризованных граней не возникнет.

S – площадь основания, – дипольный момент диэлектрика, – вектор поляризации, .

Следовательно: . Домножим данное выражение скалярно на : – эта формула справедлива в общем случае. Поверхностная плотность поляризационных зарядов равна проекции вектора поляризации на внешнюю нормаль.

Вычислим поляризационный заряд, поступающий через замкнутую поверхность S в объем V при поляризации: . При однородной поляризации: . Запишем теорему Гаусса в случае существования свободных и поляризационных зарядов:

. Но ; , – электрическое смещение (электрическая индукция).

Теорема Гаусса для диэлектриков:

Дифференциальная форма теоремы Гаусса:

Используя, что , запишем: ; – относительная диэлектрическая проницаемость среды.

Электромагнитное поле

Ранее были рассмотрены основные законы электрических и электромагнитных явлений: теорема Остроградского-Гаусса, закон полного тока и закон электромагнитной индукции. Эти законы являются обобщением экспериментальных фактов. Они позволяют решать основную задачу, возникающую при изучении электромагнитных явлений: по заданному распределению зарядов и токов определить созданные ими в каждой точке пространства электрические и магнитные поля.

Читайте так же:
Дешево кривой рог розетка

В конце 60-х годов XIX столетия Максвелл, основываясь на идеях Фарадея об электрическом и магнитном полях, обобщил законы, установленные экспериментальным путем, и разработал законченную теорию единого электромагнитного поля, создаваемого системой зарядов и токов.

Теория Максвелла – теория феноменологическая. Это значит, что внутренний механизм явлений, происходящих в среде и вызывающих появление электрических и магнитных полей, в теории не рассматриваются.

Электрические и магнитные свойства среды характеризуются в теории Максвелла тремя величинами: относительной диэлектрической проницаемостью , относительной магнитной проницаемостью и удельной электропроводностью .

Теория Максвелла является макроскопической теорией электромагнитного поля. В ней рассматриваются электрические и магнитные поля, создаваемые макроскопическими зарядами и токами, то есть зарядами, которые сосредоточены в объемах, значительно больших, чем объемы отдельных атомов и молекул. Кроме того, предполагается, что расстояние от источников полей до рассматриваемых точек пространства также во много раз больше размеров молекул. Поэтому заметные изменения полей, исследуемых в теории Максвелла, возможны только на протяжении расстояний, огромных по сравнению с размерами атомов и молекул.

В действительности, макроскопические заряды и токи представляют собой совокупности микроскопических зарядов и токов, которые создают свои электрические и магнитные поля, непрерывно изменяющиеся в каждой точке пространства. Поэтому и результирующие электрические и магнитные поля всегда переменны. Эти поля получили название микрополей. Следовательно, в теории Максвелла рассматриваются усредненные электрическое и магнитное поля, причем усреднение соответствующих микрополей производится для интервалов времени, значительно больших периодов обращения или колебания элементарных зарядов, и для участков поля, объемы которых во много раз больше объемов атомов и молекул.

Теория Максвелла основана на том, что электрические и магнитные взаимодействия происходят при посредстве электрических и магнитных полей, в которых они распространяются с конечной скоростью. Огромное значение имело открытие Максвеллом того факта, что скорость распространения электрических и магнитных взаимодействий равна скорости света в данной среде. Теория Максвелла – теория близкодействия.

Первое уравнение Максвелла

(закон электромагнитной индукции)

При изучении электромагнитной индукции подчеркивалось, что индуцированная ЭДС вихревого электрического тока определяется изменением магнитного потока: поскольку , то по времени должна быть записана частная производная, если площадка неподвижна и недеформируема.

, но в силу потенциальности поля.

первое уравнение Максвелла в интегральной форме.

Магнитный поток рассчитывается через произвольную поверхность , опирающуюся на контур , по которому берется циркуляция напряженности электрического поля. Максвелл предложил считать, что полученное выражение справедливо для любого другого замкнутого контура, произвольно выбранного в переменном магнитном поле: циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру равна взятой с отрицательным знаком скорости изменения магнитного потока сквозь поверхность, ограниченную контуром.

Второе уравнение Максвелла

(обобщенный закон полного тока)

Из закона полного тока

где – токи, охватываемые контуром , следует, что источником магнитного поля являются упорядоченно движущиеся электрические заряды (электрический ток). Максвелл предположил, что помимо токов, связанных с упорядоченным движением зарядов, источником возникновения магнитного поля является также переменное электрическое поле. Действительно, по теореме Остроградского-Гаусса:

где – алгебраическая сумма электрических зарядов, охватываемых замкнутой поверхностью; – вектор индукции электрического поля ( – вектор поляризации, – относительная диэлектрическая проницаемость среды, – вектор напряженности электрического поля, ).

Продифференцируем записанное уравнение по времени: – правая часть этой формулы имеет размерность силы тока. Но: , поэтому – называют плотность тока смещения.

Ток смещения – численное значение нормальной составляющей плотности тока, обусловленного не движением свободных электрических зарядов (ток проводимости), а изменением во времени электрического поля. Именно существование тока смещения обуславливает существование в разомкнутой цепи (конденсатор) переменного тока.

В 1876 году английский физик Генри Роуланд показал на опыте, что ток, создаваемый движущимся заряженным телом (конвенционный ток) связан с таким же магнитным полем, как равный ему ток в неподвижном проводнике. Позже в 1903 году русским ученым А.А.Эйхенвальдом экспериментально изучено магнитное поле тока смещения и тока поляризации.

второе уравнение Максвелла в интегральной форме.

Циркуляция напряженности магнитного поля по произвольному контуру L равна полному току (смещения и проводимости), пронизывающему любую поверхность S, опирающуюся на этот контур.

Третье уравнение Максвелла

(теорема о потоке электрического смещения)

Поток вектора электрического смещения , через произвольную замкнутую поверхность S, охватывающую свободные заряды q, равен алгебраической сумме последних:

третье уравнение Максвелла в интегральной форме.

где – объемная плотность заряда.

Четвертое уравнение Максвелла

(теорема о магнитном потоке)

Магнитный поток через произвольную замкнутую поверхность всегда равна нулю:

четвертое уравнение Максвелла в интегральной форме.

Это означает, что поле вектора является чисто вихревым (или, что не существует магнитных зарядов).

Дифференциальная форма уравнений Максвелла

Чаще используется дифференциальная форма записи уравнений Максвелла, которая позволяет описать электромагнитное поле в любой точке пространства. Для получения уравнений Максвелла в дифференциальной форме используем теорему Остроградского-Гаусса и теорему Стокса.

Читайте так же:
Зеркальный шкаф для ванной комнаты с розеткой

Поскольку объем и площади интегрирования произвольны, то должны быть равны подинтегральные функции:

Число переменных 6 (1 скалярная величина и 5 векторных величин). Максвелл ввел, три характеристики среды – электропроводность, – диэлектрическая проницаемость, – магнитная проницаемость и уравнения, связывающие эти характеристики с векторами электромагнитного поля (материальные уравнения):

Полученная система уравнений является полной:

Эту систему уравнений дополняют уравнением, выражающим силовое взаимодействие зарядов, токов и магнитных полей:

Типы диэлектриков. Поляризация диэлектриков.

Все вещества по электропроводности разделяются на проводники и диэлектрики. Промежуточное положение между ними занимают полупроводники.

Проводниками называют вещества, в которых имеются свободные носители зарядов, способные перемещаться под действием электрического поля. Примерами проводников являются металлы, растворы или расплавы солей, кислот, щелочей.

Диэлектриками или изоляторами называются вещества, в которых нет свободных носителей зарядов и которые, следовательно, не проводят электрический ток. Это будут идеаль­ные диэлектрики. В действительности диэлектрики проводят электрический ток, но очень слабо, их проводи­мость в 10 15 -10 20 раз меньше, чем у проводников. Это обусловлено тем, что в обычных услови­ях заряды в диэлектриках связаны в устойчивые молекулы и не могут, как в проводниках, легко отрываться и становиться свободными. Молекулы диэлектрика электронейтральны: суммарный заряд электронов и атомных ядер, входящих в состав молекулы, равен нулю. В первом приближении молекулу можно рассматривать как диполь с электрическим моментом ; здесь q — заряд ядра молекулы, -век­тор, проведенный из "центра тяжести" электронов в "центр тяжести" положительных заря­дов атомных ядер.

Различают два основных типа диэлектриков: полярный и неполярный.

Диэлектрик называют неполярным, если в его молекулах в отсутствие внешнего электрического поля центры тяжести отрицательных и положительных зарядов совпадают, например, Для них диполный момент , т. к. . И, следовательно, суммарный дипольный момент неполярного диэлектрика .

В молекулах полярныхдиэлектриков ( , спирты, НС1. ) центры тяжести зарядов раз­ных знаков сдвинуты друг относительно друга. В этом случае молекулы обладают собствен­ным дипольным моментом . Но эти дипольные моменты в отсутствие внешнего электрического поля из-за теплового движения молекул ориентированы хаотически и суммарный дипольный момент такого диэлектрика равен нулю, т. е.

Если диэлектрик внести в электрическое поле, то в нем произойдет перераспределе­ние связанных зарядов. В результате этого суммарный дипольный момент диэлектрика становится отличным от нуля. В этом случае говорят, что произошла поляризация диэлектрика. Различают три типа поляризации диэлектриков:

1) ЭЛЕКТРОННАЯ: oна наблюдается в неполярных диэлек­триках, когда электронная оболочка смещается относитель­но ядра против поля.

2) ОРИЕНТАЦИОННАЯ: она наблюдается в полярных диэ­лектриках, когда диполи стремятся расположиться вдоль поля. Этому препятсятвует тепловое хаотическое движение.

3) ИОННАЯ: она наблюдается в твердых кристаллических диэлектриках, когда внешнее по­ле вызывает смещение положительных ионов по полю, а отрицательных — против поля.

Количественной мерой поляризации диэлектрика является поляризованность диэлек­трика — векторная величина, равная отношению суммарного дипольного момента малого объема диэлектрика к величине этого объема , т. е.

в СИ Р измеряется в Кл / м 2 .

Таким образом, вектор поляризованности диэлектрика равен дипольному моменту единицы объема поляризованного диэлектрика.

Как показывает опыт у изолированных диэлектриков вектор поляризованности для не слишком больших пропорционален напряженности электрического поля, т.е.

где — электрическая постоянная, æ называется диэлектрической восприимчивостью ди­электрика; это безразмерная величина, которая для вакуума и, практически, для воздуха, ра­вна нулю(æ — каппа, греческая буква).

Итак, при внесении диэлектрика в электрическое поле с напряженностью происходит поляризация диэлектрика, в результате которой возникает поле связанных зарядов, направ­ленное против внешнего поля.

Напряженность поля связанных зарядов обозначим через ; оказывается она пропорциональна напряженности поля в диэлектрике, т.е. поэтому напряженность поля в диэлектрике , или

откуда (11-36) где (11-37)

называют относительной диэлектрической проницаемостью вещества или среды; безразмерная величина; т.к. æ =0 для вакуума и, практически, для воздуха, для этих же сред = 1. Итак, поле в диэлектрике ослабляется в ε раз, по сравнению с полем в вакууме.

11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов сме­щения, напряженности и поляризованности

ТеоремаОстроградского-Гаусса для потока вектора в вакууме имела вид:

где Q — суммарный заряд, охватываемый замкнутой поверхностью S. В диэлектрике Q складывается из свободных (сторонних) зарядов и связанных зарядов, т.е.

Можно показать, что .

Подставляя эту формулу в (11-38), после преобразования получим (11-39)

называют вектором электрического смещения или вектором электрической индукции. Она измеряется, как и , в Кл/м 2 . Учитывая, что находим

Линии вектора могут начинаться или заканчиваться лишь на свободных зарядах, а линии на свободных и связанных. С учетом (11-40) формула (11-39) запишется так

т.е. поток вектора электрического смещения через произвольную замкнутую поверхность S равен алгебраической сумме свободных зарядов, охватываемых этой поверхностью.

Это и естьтеорема Остроградского-Гаусса в интегральной форме для поля в диэлек­трике, которая в дифференциальной форме выглядит так:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector