Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Контроль изоляции оборудования высокого напряжения — Основные методы измерения диэлектрических характеристик

Контроль изоляции оборудования высокого напряжения — Основные методы измерения диэлектрических характеристик

ГЛАВА ТРЕТЬЯ
ИЗМЕРЕНИЕ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК
ОСНОВНЫЕ МЕТОДЫ
Методы контроля диэлектрических характеристик изоляции при рабочем напряжении на объекте основаны на измерении тока, протекающего через изоляцию под воздействием фазного напряжения сети. Их можно разделить на три группы. К первой группе относятся методы прямого измерения контролируемой величины, ко второй — методы сравнения между собой характеристик разных объектов данного распределительного устройства (РУ). Методы третьей группы основаны на сравнении измеряемого объекта с известным, принятым в качестве образцового.
Прямым измерением тока через изоляцию можно определить лишь модуль ее комплексной проводимости или (при малых потерях) ее емкость.

Рис. 19. Схема измерения диэлектрических характеристик неравновесно-компенсационным методом:
1—3—объекты контроля; 4— измерительное устройство

Рис. 20. Схема сравнения диэлектрических характеристик двух объектов:
УР —указатель равновесия; R3, R4и С4 — элементы плеч моста

С целью оценки изменения состояния изоляции должно быть определено изменение контролируемого параметра, составляющее доли процента от его значения. Такая точность прямого измерения недостижима в эксплуатационных условиях.
Если на входе измерительного прибора предварительно скомпенсировать ток, протекающий через неповрежденную изоляцию данного объекта, то в дальнейшем будет измерено лишь приращение тока, связанное с изменением диэлектрических характеристик изоляции. Такой метод измерения, названный по аналогии с неравновесными мостовыми методами неравновесно-компенсационным, не предъявляет высоких требований к точности измерительного прибора и может быть применен в условиях эксплуатации.
Одна из схем, реализующих этот метод, основана на измерении суммы трехфазной системы токов, протекающих через изоляцию трех однотипных объектов (рис. 19) [30]. В предположении малых различий характеристик изоляции в исходном состоянии трех одновременно контролируемых объектов можно считать, что измеряемый суммарный ток будет близок к нулю. При увеличении комплексной проводимости изоляции одного из этих объектов увеличится ток через нее и соответственно изменится суммарный ток; приращение этого тока можно измерить любым прямым методом.
Применение такого метода измерений для эксплуатационного контроля изоляции вполне допустимо, ибо ничтожно мала вероятность дефектов изоляции, вызывающих одновременные и одинаковые изменения диэлектрических характеристик всех трех объектов.
К методам второй группы относится соответственное сравнение емкости и tg 6 однотипных объектов одноименных фаз [31]. Сравнение производится при помощи мостовой схемы, обычно мостом Шеринга (рис. 20). При этом измеряется разность углов диэлектрических потерь объектовСх и С’х:

В качестве объекта, используемого как образцовая мера, может быть выбран аппарат с малыми и стабильными потерями (например, конденсатор связи). Тогда значения tgδ других объектов, полученные путем сравнительных измерений, будут определены с минимальной погрешностью.
К схемам, реализующим методы третьей группы, относятся мостовая, ваттметровая и компенсационная. В качестве образцовой величины — опорного напряжения — используется, как правило, напряжение вторичной обмотки трансформатора напряжения (TH) той фазы системы шин РУ, к которой присоединен контролируемый объект.
Мостовая схема с использованием TH в качестве источника опорного напряжения (рис. 21) отличается от обычной тем, что на плечо сравнения подается напряжение со вторичной обмотки трансформатора [32].
Схема ваттметровой установки для измерений при рабочем напряжении (рис. 22) практически не отличается от схем установок, применявшихся при испытаниях отключенного оборудования. Цепи напряжения ваттметра питаются от TH соответствующей системы шин. Для компенсации систематической погрешности измерения tgδ, вызванной угловой погрешностью TH, можно в цепь напряжения ваттметра ввести фазосдвигающее устройство — резистор R, часть которого шунтируется конденсатором С. Необходимый фазовый сдвиг обеспечивается изменением емкости конденсатора или сопротивления резистора.
Одна из первых схем, предложенных для реализации методов измерения tgδ изоляции при рабочем напряжении, приведена на рис. 23,а. Опорное напряжение подается со вторичной обмотки TV, а промежуточный трансформатор служит для поворота фазы напряжения на 180°. Ток Ix, протекающий через изоляцию объекта, компенсируется током I0 образцовых мер (емкость Со и резистор Ro).

Рис. 21. Мостовая схема измерения диэлектрических характеристик. Обозначения см. на рис. 20
Рис. 22. Ваттметровая схема измерения диэлектрических характеристик



Рис. 23. Компенсационные схемы измерения диэлектрических характеристик: а — компенсация токов; б— компенсация напряжения

Современные схемы компенсации строятся с применением операционных усилителей (рис. 23,б). Источником опорного напряжения является вторичная обмотка TH. Конденсатор С0, включенный в цепь обратной связи операционного усилителя ОУ1, обеспечивает поворот на 90° фазы входного напряжения, пропорционального току через изоляцию объекта. Сдвиг фаз, соответствующий потерям в изоляции объекта, создается током через резистор. Операционный усилитель ОУ2 обеспечивает поворот фазы напряжения на 180°. Резистор R1 обеспечивает уравновешивание схемы по модулю тока, а резистор R2—по фазе.
Применяется схема, обеспечивающая одновременный контроль трех фаз [47].
Устройство для измерений в такой схеме содержит три образцовых конденсатора и общие для трех фаз компаратор тока и указатель равновесия. Пофазная балансировка схемы (объект — образцовый конденсатор) производится регуляторами, включенными последовательно с образцовыми конденсаторами. Наличие таких регуляторов позволяет использовать устройство как три мостовые схемы с общим указателем равновесия.
Следует уточнить, что методами этой группы при использовании TH также нельзя произвести измерение действительного значения tgδ изоляции объекта, так как угловая погрешность ПТ, используемого в качестве образцового, превышает допустимую погрешность определения угла потерь. Поэтому измеренное значение tgδ будет иметь большую систематическую погрешность, для исключения которой необходимо вносить поправку. Поскольку при контроле изоляции важны лишь изменения параметров, указанное ограничение точности измерений не имеет большого практического значения.
Амплитудная погрешность TH обычно значительно меньше допускаемой погрешности измерения емкости изоляции. Поэтому методы третьей группы обеспечивают измерение действительной емкости объекта.
При контроле под рабочим напряжением принципиально невозможно исключить из результатов измерения токи влияний. За счет этих токов измеренное значение диэлектрических характеристик может отличаться от действительного; изменение токов влияний между двумя измерениями может внести погрешность в их результаты. Значения погрешности от токов влияний и ее стабильность должны быть установлены в каждом конкретном случае.
Измерение диэлектрических характеристик изоляции под рабочим напряжением возможно только при прямой (нормальной) схеме измерительной установки. Поэтому в настоящее время без конструктивных изменений объекта осуществима организация такого контроля лишь при наличии специальных (для устройств измерения напряжения ПИН) или измерительных выводов, а также если имеется изоляция нижнего фланца объекта от земли. Такими объектами являются вводы, трансформаторы тока, конденсаторы связи, реакторы.

Читайте так же:
Выключатель света пультом для телевизора

Методы и приборы для тестирования линий связи

Тестирование линий связи (ЛС) подразумевает применение соответствующих методов и приборов. Два основных подхода — тестирование на постоянном и переменном токе. В свою очередь, тестирование на переменном токе выполняется двумя способами — путем измерения падающей волны или измерения отраженной волны (метод рефлектометрии).

Измерения на постоянном токе и измерения падающей волны используются для определения первичных и вторичных параметров линии. Оба метода могут быть реализованы как путем непосредственного измерения волны, так и с применением метода сравнения, частным случаем которого является мостовой метод. Основное достоинство метода сравнения — его высокая точность в широком диапазоне измеряемых значений.

Помимо названной существуют и другие классификации методов тестирования. Так, всю их совокупность можно представить в виде больших групп, одна из которых требует обязательного закрытия действующей системы связи на время измерения, а другая может выполняться в работающей системе. Более коротко: способ с закрытием связи и способ без закрытия связи.

Современная концепция тестирования сетей связи опирается на модель взаимодействия открытых систем OSI, в соответствии с которой все измерительные приборы для тестирования сетей связи подразделяются на две категории:

  • анализаторы физического уровня (первый уровень OSI);
  • анализаторы более высоких уровней (со второго по седьмой).

К анализаторам физического уровня относятся мультиметры, кабельные тестеры, рефлектометры для металлических и оптических кабелей, осциллографы, измерители уровня сигнала и анализаторы спектра. Другая группа анализаторов второго—седьмого уровней модели OSI измеряет параметры циклов и пакетов, проверяет целостность данных, сеансы связи, преобразование данных и приложения. Это могут быть карманные тестеры, анализаторы протоколов в виде универсальных приборов со специальными модулями для решения различных задач или пакеты программ для использования в комплексах тестирования и для управления сетевых узлов.

Тестирование кабельных линий связи осуществляется только посредством анализаторов физического уровня. В дальнейшем именно их мы рассмотрим более подробно.

За несколько последних десятилетий рынок анализаторов физического уровня для тестирования симметричных линий претерпел революционные изменения. Причиной стало появление технологий xDSL и структурированных кабельных систем. Приборы этой группы позволяют оценить такие параметры линии связи, как ее длина, сопротивление, затухание, коэффициент отражения, переходное затухание между витыми парами медных кабелей и др. Они применяются и для локации электрического состояния кабельной линии (определения неоднородностей, параллельных отводов, мест повреждения линии и т. д.).

Читайте так же:
Как подключить выключатель света регулируемый

В «аналоговую эпоху» приборы предназначались для решения проблем традиционных телефонных сетей с их ориентацией на диапазон звуковых частот. Современные приборы для тестирования симметричных линий работают в диапазоне частот до нескольких сотен мегагерц. В дополнение к группе низкочастотных приборов сформировались две новые. Одна из них ориентирована на тестирование абонентских линий с поддержкой xDSL, другая — на тестирование СКС.

Цена широкополосных приборов значительно выше, поэтому дешевые устройства низкочастотного диапазона с рынка не исчезли. Более того, благодаря ряду эволюций, область их применения существенно расширилась. Например, реализация новых методов тестирования абонентских линий повысила качество диагностики, а автоматизация процесса измерений облегчила работу персонала. В результате низкочастотные приборы нового поколения обеспечивают диагностику и локализацию большей части дефектов кабельных линий связи и применяются к тому же для тестирования абонентских линий при развертывании xDSL. Еще один пример — группа простых приборов с набором вспомогательных функций для первоначального тестирования СКС.

Дальнейший материал по диагностике кабельных линий связи будет посвящен детальному рассмотрению приборов и методов тестирования симметричных линий их на основе. Некоторые из устройств будут лишь упомянуты, параметры других — подробно описаны. Итак, о каких приборах идет речь?

Мультиметры служат для измерения параметров линии по постоянному и переменному току (напряжение станционной батареи, сопротивление шлейфа абонентской линии и др.).

Мосты постоянного и переменного тока дополняют мультиметры, позволяя более точно оценивать первичные параметры линии связи.

Измерители уровня сигнала представляют большую группу приборов, используемых при настройке, эксплуатации и устранении повреждений в системах передачи по металлическим кабелям. С их помощью можно измерять затухание линии, переходное затухание, гармонические помехи и шумы. Измерители уровня работают в селективном или широкополосном режиме. Селективные измерители уровня позволяют оценивать уровни сигнала или шума только в определенной, достаточно узкой (100 Гц, 1 кГц, 3,1 кГц и т. д.) полосе частот. Благодаря этому свойству селективные измерители способны оценивать очень низкие уровни сигналов и помех. Широкополосные измерители уровня применяются, как правило, для измерения широкополосных помех (например, тепловых шумов регенераторов и усилителей). В принципе они пригодны и для измерения уровней моночастотных сигналов, если те значительно превышают уровень широкополосной помехи. Важное преимущество селективных измерителей по сравнению с широкополосными состоит также в том, что они позволяют производить тестирование работающей системы связи.

Тестеры коэффициентов битовых ошибок BER — основной инструмент для оценки линии цифровой связи как при ее первоначальной настройке, так и в процессе эксплуатации. В последнем случае работу системы связи требуется приостановить. Принцип действия прибора основан на использовании псевдослучайных последовательностей. Алгоритмы функционирования тестеров BER опираются на рекомендации ITU-T — G.821, G.826, V.53 и М.2100. Тестеры ошибок позволяют оценивать битовые и блочные ошибки, а также ошибки в секундных интервалах, включая долю таких интервалов без ошибок EFS, с ошибками ES и с многочисленными ошибками SES.

Результаты тестирования ошибок обычно представляют в виде числовых значений или гистограммы. Некоторые анализаторы протоколов высокого уровня имеют встроенные функции тестирования ошибок. В отличие от измерителей уровня, тестеры ошибок требуют обязательного закрытия системы связи.

Рефлектометры во временной области, TDR, позволяют оценить характерные точки линии связи, включая неоднородности, повреждения и т. д.

Из-за сложной природы повреждений витых пар отдельное тестирование во временной или частотной области не позволяет исчерпывающим образом идентифицировать причину повреждения и его местоположение.

К достоинствам рефлектометра относится тот факт, что измерения могут проводиться только содного конца. Однако такое подключение не всегда позволяет точно определить причину отражений (особенно в случае множественных дефектов). Например, рефлектометр не может отличить отражение вследствие присутствия пупиновской катушки от отражения из-за обрыва витой пары. Имея низкое выходное сопротивление, близкое к 100 Ом для узких испытательных импульсов, рефлектометр не в состоянии надежно обнаруживать отражения от мест повреждения с сопротивлением порядка 1000 Ом и более.

Кроме того, тестирование в частотной области имеет существенно больший набор функций, включая измерение первичных параметров — сопротивления, утечки и емкости, а также параметров передачи, влияния, шумов, асимметрии и др.

Поэтому разработчики измерительных приборов все чаще задумываются о необходимости объединения в одном устройстве функций тестирования во временной и частотной области. Сегодня подобные комплексные приборы уже существуют и позволяют добиться более высокой точности диагностики при одновременном сокращении временных затрат.

Читайте так же:
Как из тока получается свет

Осциллографы и анализаторы спектра обычно используются при идентификации сложных повреждений, когда требуется точное определение формы сигнала или его частотного состава. Например, большой коэффициент ошибок BER может быть вызван множеством причин: дефектной выходной ступенью передатчика, слишком большими значениями мощности шума или дрожания из-за включения электрического двигателя либо переходными влияниями со стороны систем передачи, работающих по тому же кабелю. Осциллограф предоставляет единственную возможность для исчерпывающей детализации параметров сигнала, включая его форму, частоту, время нарастания и спада.

Логические анализаторы используются для записи сигналов синхронизации. Они похожи на осциллографы с дополнительными функциями тестирования цифровых сигналов, контролируют одновременно несколько синхросигналов и снабжены возможностью автоматического запуска при определенном состоянии контролируемых сигналов.

Испытание и проверка силовых кабелей — Измерение тока сквозной проводимости

Измерение тока сквозной проводимости (утечки — установившегося значения зарядного тока при неизменной величине испытательного напряжения) является одним из видов контроля состояния и качества изоляции кабеля.
Измерение тока проводимости обычно совмещается с испытанием повышенным напряжением и является дополнительным критерием состояния изоляции.
Измеряемая миллиамперметром величина токов утечки зависит:
от длины испытываемой линии, так как проводимость изоляции прямо пропорциональна длине линии;
от температуры кабеля в момент производства испытания (кабель, испытанный немедленно после снятия нагрузки и отключения, имеет большие токи, чем этот же кабель, испытанный в холодном состоянии). Изменение проводимости изоляции трехжильного кабеля в зависимости от температуры показано на рис. 23;
от конструкции и состояния концевых муфт вследствие возникновения значительных поверхностных токов утечки при загрязнении поверхности воронки; наличия трещин на поверхности заливочной массы, ее увлажнения, загрязнения изоляции жил, втулок и изоляторов;
от влажности воздуха, токов утечки и токов короны, возникающих в схеме испытания, соединительных проводниках, кабельных наконечниках и других элементах, входящих в схему испытания.
Несмотря на то что измерение тока проводимости на выпрямленном напряжении является одним из самых распространенных при профилактических испытаниях изоляции, методика этого измерения зачастую страдает рядом дефектов, вследствие чего величина токов проводимости определяется со значительными погрешностями, которые могут быть вызваны неполнотой выпрямления постоянного тока (пульсацией напряжения), а также паразитными токами.
а) Устранение погрешностей, связанных с неполнотой выпрямления

Рис. 23. Ориентировочная зависимость поправочного коэффициента К от температуры кабеля.
Устранение погрешности в измерении тока проводимости, вызываемой несовершенством выпрямления, может быть выполнено:
увеличением емкости, включенной в испытательную схему, до такой величины, когда погрешность измерения не будет превышать допустимую (включение балластной емкости);
введением поправочного коэффициента, учитывающего ошибку измерения.
Применение поправочных коэффициентов на первый взгляд является наиболее простым, так как не требует применения балластных емкостей, исключающих пульсацию.
Однако сами поправочные коэффициенты, особенно при применении однополупериодной схемы выпрямления, могут быть вычислены с большой погрешностью.
Поправочный коэффициент определяется как отношение максимального значения испытательного напряжения к среднему значению этого напряжения.
На поправочный коэффициент следует умножать измеренные токи утечки кабеля для приведения их к истинному значению. Допускаемая относительная погрешность измерения тока утечки при испытании выпрямленным напряжением составляет 5%-
Если устранить пульсацию напряжения, то тем самым будет исключена и пульсация измеряемого тока утечки.
Поэтому для устранения погрешности измерения тока утечки достаточно снизить до допустимой величины пульсацию напряжения на кабеле, включив необходимую балластную емкость (см. рис. 21).
Необходимо иметь в виду, что величина сопротивления R„э (см. рис. 23) определяется не только утечками самого кабеля, но и всеми другими утечками измерительной схемы, в том числе утечками балластной емкости. Для более точного определения величины балластной емкости рекомендуется производить специальное измерение утечки схемы и конденсаторов, предназначенных к использованию в качестве балластных емкостей, либо выбирать последние с большим запасом.
б) Устранение погрешностей, вызываемых паразитными токами
Включение измерительного прибора в схему испытательной установки возможно (см. рис. 24) в точках 1 — 1 («обратная» схема), 2—2 — («перевернутая» схема) и 3—3 («нормальная» схема).

Рис. 24. Схемы включения приборов при измерении тока утечки.

Таблица 2
Методы исключения паразитных токов при измерении токов проводимости

Может быть частично отведен, если изолировать корпус трансформатора от земли и соединить его с низковольтным выводом помимо прибора

Ток I’2 не может быть исключен. Токи короны I"г возникают при напряжении более 20 кВ и могут быть снижены удалением частей, находящихся под высоким напряжением, от заземленных частей. Полностью ток не исключается

Читайте так же:
Можно ли запитать светодиодную ленту от розетки

Ток замыкается помимо прибора

Ток I’2 замыкается помимо прибора. Ток 1"2 может быть исключен экранированием (рис. 25)

Ток замыкается помимо прибора

Токи I’2 и I"2 замыкаются помимо прибора. Рекомендуется экранировать провод от объекта до приборов

При измерениях тока утечки возможны искажения отсчета, обусловленные паразитными токами, возникающими под действием напряжения измерительной установки и протекающими через ее измерительный элемент, минуя объект измерения (в данном случае испытуемый кабель).
Эти токи, накладываясь на измеряемый ток кабеля, могут внести значительные искажения в результаты измерения.
Основные паразитные токи следующие:
ток, проходящий между обмоткой испытательного трансформатора и его корпусом (ток Л); ток утечки изоляции провода, подводящего испытательное напряжение к кабелю (/’г), и ток короны, возникающий на этом проводе (/"2).
Методы исключения паразитных токов в зависимости от места включения измерительного прибора, приводятся в табл. 2.
Схема включения прибора в точке 1—1 является наиболее несовершенной (как видно из таблицы).
Наиболее правильные измерения могут быть получены при включении прибора в точках 2—2 и 3—3, но в этих случаях необходимо применить экранирование провода от прибора до объекта испытания (кабеля), что создает токам короны путь помимо прибора (рис. 25).

Кабели, статья. Портал «www.rus.625-net.ru».

Историки считают, что появление кабеля связано с изобретением в 1832 году российским ученым П.Л. Шиллингом электрического телеграфа. В ту же пору англичанин Майкл Фарадей для обозначения веществ, через которые проникает электрическое поле, ввел в обращение термин «диэлектрик» — производное от греческого dia — через и английского electric — электрический. В качестве проводника в те давние времена использовалась медь, а изолятора — дефицитная гуттаперча и пропитанная хлопчатобумажная пряжа.

Медь так и осталась, а в качестве изоляционного материала в кабельной промышленности сейчас используются другие материалы.

Широко применяются углеводородные полимеры (полиолефины), например — полиэтилен, соединение водорода, кислорода и углерода. Производится полиэтилен низкой плотности (высокого давления), средней плотности (среднего давления) и высокой плотности (низкого давления). Встречается так называемый «сшитый» полиэтилен, отличающийся от обычного повышенной термостойкостью (95 °C против 70 °C).

В числе достоинств поливинилхлорида, соединения хлора, углерода и водорода, — широкий диапазон рабочих температур и низкая воспламеняемость. Имеется масса модификаций ПВХ: от пожаростойких до токопроводящих, которые служат в кабеле для снятия статических зарядов.

Можно обнаружить в кабелях полиуретан, полипропилен, полистирол, капрон, нейлон, шелк, резину, фторопласт. Такие материалы используются для изготовления кабелей со специальными свойствами: особо тонких или эластичных, или способных работать в условиях повышенной влажности или скачках температур.

Влияние кабеля на сигнал увеличивается с ростом диэлектрической проницаемости и тангенса угла потерь; лучшим изолятором в этом смысле является вакуум, его проницаемость равна единице, а потери — нулю. При выборе материала конструкторам приходится принимать во внимание и механические свойства, поэтому полипропилен и фторопласт используются довольно редко.

Как и лекарства, полимеры выпускаются под разными названиями. Многие запатентованы, например, тефлон, и это вынуждает конкурентов выдумывать новые имена. Иногда под разными марками выпускают и разные материалы. Свойства полимера определяются не только его химическим составом, но и массой других параметров, поэтому производятся сотни модификаций полиэтилена или полихлорвинила. Так что при покупке обратите лучше внимание на свойства самого кабеля, а не на материалы, из которых он изготовлен. Диэлектрики определяет и такие свойства кабеля, как рабочий диапазон температур и огнестойкость, выделение и токсичность дыма, абсорбцию (поглощение) газов и жидкостей из окружающей среды. Материалы широкого применения обеспечивают нормальную работу кабеля при температуре от 0 до 80 °С, специальные — сохраняют свои свойства при охлаждении до минус 40-70 °С и при нагреве до 150-300 °С. Помните и о пожаростойкости кабеля — по нему не должен распространяться огонь, но этому требованию отвечают не все модели из имеющихся в продаже.

Кабели по конструкции можно разделить на две группы: коаксиальные (от латинского со (cum) — совместно и axis — ось) и двухпроводные. И в том, и в другом случае кабель содержит два проводника, разделенные диэлектриком. А в начале кабельной эры к абоненту, в целях экономии, тащили только один провод, а в качестве обратного использовали землю, отсюда и пришли названия: «земляной», «общий» и прочие производные. За прошедшие 170 лет филологи так и не удосужились навести порядок и чистоту в терминологии: одним и тем же словом называем мы и собственно кабель (от голландского: cabel — канат, трос), и кабель с разъемами или коннекторами (слова «разъем» и «connector» не синонимы, а наоборот: разъединитель и соединитель). Что ж, будем пользоваться тем, что есть: обозначениями, которые прижились на практике. Даже если они и не вполне корректны, то понятны и привычны.

Читайте так же:
Допустимый длительный ток для кабеля авббшв 4х185
Акустический кабель.
Конструкция кабеля обеспечивает его прочность и надежность. Здесь: 1 – внешний защитный слой изоляции, 2 – внутренний защитный слой,
3 – индивидуальная изоляция проводников, 4 – проводники

Кабели по назначению в аудиотехнике можно разделить на три группы:

Акустические — предназначены для доставки сигнала от усилителя к акустическим системам.

Межблочные — передают аналоговый звуковой сигнал малой мощности от одного аппарата к другому.

Цифровые — обеспечивают передачу сигналов в цифровом виде.

В свою очередь, по особенностям использования кабели можно разделить тоже на три группы: студийные, сценические и туровые.

В студии условия эксплуатации оказываются довольно комфортными: практически постоянная температура и влажность, кабель уложен в каналы или закреплен, и практически не подвергается механическим воздействиям.

Кабель для сцены должен быть более прочным: на него могут наступить, поставить тяжелый аппарат или довольно сильно дернуть. Для повышения механической прочности на разрыв в кабеле имеется корд, он может быть выполнен из хлопчатобумажной ткани, синтетической нити или даже из металла. Такой кабель можно использовать для подвешивания микрофонов, специальные модели способны выдержать разрывающее усилие до тонны — можно использовать для буксировки застрявшего автомобиля или для подвешивания акустических систем.

Самые жесткие требования предъявляются к кабелям, предназначенным для туровой работы. Жара, холод, дождь и снег, рывки и завязывание в морские узлы — все это не должно испортить кабель. Цена кабеля, способного выдержать столько неприятностей, в несколько раз выше, чем предназначенного для монтажа в студии — но сорванный концерт стоит все равно дороже.

С точки зрения количества сигналов, которые можно предавать по кабелю, существуют также три группы: моно, стерео и многоканальные (или мультикоры). Эти названия используют и для обозначения собственно кабеля, и готовой, с разъемами, конструкции.

Без мультикора не обойтись в зале, по нему сигналы со сцены подаются в пульт и возвращаются к системе звукоусиления. Удобен мультикор и в студии: прокладывать жгут из десятка раздельных кабелей гораздо труднее, и стоимость инсталляции оказывается выше. Теоретически, за счет близкого расположения проводников в мультикоре, большим оказывается взаимное проникание сигналов из канала в канал, но на практике разделение сигналов оказывается вполне достаточным.

В любом случае по кабелю передается информация в виде электрического сигнала. Если сигнал проходит без потерь, то и информация передается полностью. Потери информации или изменение звучания всегда является следствием искажения сигнала, так что качество кабеля всегда можно оценить объективно и точно, но иногда это нелегко сделать.

Поэзия формул

Полную информацию об эксплуатационных свойствах кабеля должен предоставить его поставщик.

Простейшая линейная модель

Рис.1. Взаимодействие кабеля, источника и приемника сигнала

Для описания свойств кабеля принято оперировать так называемыми погонными параметрами, то есть отнесенными к единице длины — одному метру. Погонная емкость межблочных кабелей определяется конструкцией, размерами и свойствами диэлектрика, и лежит в пределах 10…100 пФ/м, примерно такие же величины характерны и для акустических кабелей.

Погонная индуктивность зависит от геометрии кабеля и тоже невелика, речь идет о микроскопических величинах: 0,1…1 мкГн/м.

Омическое сопротивление проводника определятся его сечением и материалом, из которого он изготовлен. Например, метр медной проволоки сечением 1 мм2 имеет сопротивление 0,017 Ом.

Рис.1. Взаимодействие кабеля, источника и приемника сигнала

Чтобы оценить влияние кабеля на проходящий через него аналоговый сигнал, обратимся к схеме, показанной на рисунке 1. Условия, при которых влиянием кабеля можно пренебречь, оказываются такими:

ВКонтакте Facebook Habr Instagram YouTube Telegram Яндекс Дзен

Copyright © 2001-2021 Аудиомания, все права защищены.

«Аудиомания» и «Audiomania» являются зарегистрированными знаками обслуживания.

Сайт предназначен для лиц, достигших 18 лет. Условия использования сайта Оферта

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector