Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подстанция 110-10 кВ, сеть электр. 110 кВ

Подстанция 110-10 кВ, сеть электр. 110 кВ

Sн Полная номинальная мощность трансформатора (автотрансформатора) в МВА; Uвн Номинальное напряжение обмотки высшего напряжения в кВ; Uсн Номинальное напряжение обмотки среднего напряжения в кВ; Uнн Номинальное напряжение обмотки низшего напряжения в кВ; ΔPx Потери мощности холостого хода в кВт; ΔPквн Потери мощности короткогозамыкания (высокая — низкая) в кВт; ΔPквс Потери мощности короткогозамыкания (высокая — средняя) в кВт; Uкв-с Напряжение короткого замыкания (высокая — средняя) в %; Uкв-н Напряжение короткого замыкания (высокая — низкая) в %; Uкс-н Напряжение короткого замыкания (средняя — низкая) в %; Ix Ток холостого хода в %; Sнн Полная номинальная мощность обмотки низкого напряжения. Близкие по типу ТДН 16000/110/6

Подстанция 110-10 кВ, сеть электр. 110 кВ

Введение

Электроснабжение сельскохозяйственных районов может осуществляться от районных энергетических систем (централизованное электроснабжение) или от районных или поселковых электростанций (местное или децентрализованное электроснабжение).
В настоящее время сельскохозяйственные потребители в основном имеют централизованное электроснабжение, осуществляемое от шин станций и трансформаторных подстанций(ТП) энергосистем или тяговых ТП электрифицированных железных дорог. Местное электроснабжение характерно для малонаселенных и труднодоступных районов.

Основная особенность электроснабжения сельского хозяйства по сравнению с электроснабжением промышленности и городов — это подвод электроэнергии к большому количеству сравнительно маломощных рассредоточенных объектов.

В настоящее время в связи с переходом сельского хозяйства на промышленную основу, строительством крупных животноводческих комплексов, ростом электропотребления на производстве и в быту единичные мощности электропотребителей растут. Но структура организации сельскохозяйственного производства, малая плотность населения сельских районов определяют малую плотность электрических нагрузок и значительную протяженность электрических сетей.

Основой системы сельского электроснабжения являются электрические сети напряжением 0,38 — 110 кВ, от которых снабжаются электроэнергией преимущественно (более 50% по расчетной нагрузке) сельскохозяйственные потребители, включая коммунальнобытовые, объекты мелиорации и водного хозяйства, а также предприятия и организации, предназначенные для бытового и культурного обслуживания сельского населения.

Электрические сети сельскохозяйственного назначения делятся на два вида: питающие и распределительные.

Питающие сети служат для передачи электроэнергии от шин станций и ТП энергосистем к промежуточным трансформаторным ТП. Эти сети состоят из линий 35 и 110 кВ и ПС 35110/10 кВ.

Распределительные сети состоят из линий напряжением 6, 10, 20 кВ и ПС 6/0,4; 10/0,4; 20/0,4 кВ.

Напряжение 6 кВ допускается только при расширении существующих сетей данного напряжения. Распределительные сети 20 кВ нашли применение лишь в ряде районов страны (например, в Прибалтике).

При расположении сельскохозяйственных объектов вблизи линий 35 кВ и при значительном удалении их от подстанций 35/10 кВ электроснабжение потребителей целесообразно осуществлять от ТП ПС 35/0,4 кВ (подстанций «глубокого ввода»).

Распределительные сети низкого напряжения состоят из линий напряжением 0,38 кВ и непосредственно питают электроэнергией присоединенные к ним электроприемники.

В настоящее время в основном применяется трехступенчатая система распределения электроэнергии 110/35/10/0,4 кВ с двухступенчатыми подсистемами 110/35/0,4 кВ и 110/10/0,4 кВ.

Основной проблемой, которую можно встретить при рассматривании электроснабжения сельскохозяйственных потребителей является надежность электроснабжения. Повышение уровня надежности электроснабжения является технико-экономической задачей. Выбор средств обеспечения надежного электроснабжения можно проводить исходя из минимума приведенных затрат с учетом ущерба от перерывов в электроснабжении или при отсутствии данных об ущербах — по допустимому нормированному времени отключения потребителей.

Для обеспечения надежности электроснабжения сельскохозяйственных потребителей предусматриваются следующие технические мероприятия; повышение надежности отдельных элементов электрических сетей и в том числе за счет применения новых материалов; секционирование сетей при помощи выключателей с АПВ, автоматических отделителей и разъединителей; резервирование как сетевое, так и местное, энергетическое и технологическое; приближение напряжений 35 — 110 кВ к потребителям, разукрупнение ПС 35 — 110 кВ, позволяющее сократить протяженность электрических сетей 10 кВ; увеличение количества двухтрансформаторных ПС 35 — 110 кВ и подстанций с двусторонним питанием; разукрупнение ТП напряжением 10/0,4 кВ и раздельное питание от них производственных и коммунально-бытовых потребителей; применение батарей статических конденсаторов для компенсации реактивной мощности.

Секционирование ВЛ, уменьшая отключаемую при авариях протяженность сети, снижает число отключений понизительных ПС. Применяется неавтоматическое и автоматическое секционирование. Неавтоматическое секционирование в первую очередь снижает число и длительность преднамеренных отключений; оно выполняется при помощи линейных разъединителей в дополнение к автоматическому секционированию. Наличие секционирующих разъединителей облегчает отыскание замыканий на землю, уменьшает число потребителей, отключаемых при ремонтных работах. На распределительных линиях напряжением до 35кВ включительно необходимо устанавливать разъединители на всех ответвлениях, длина которых больше 1,52км, а на ВЛ 35 кВ, питающих ТП 35/10 кВ, на всех ответвлениях длиной более 0,5км. При длине ответвлений к потребительским ТП 100200м рекомендуется устанавливать подстанционные разъединители в начале ответвлений.

Читайте так же:
Выключатель с индикатором вверху или внизу

При автоматическом секционировании ВЛ разбивают на участки, в начале которых устанавливают специальные секционирующие аппараты, отключающие поврежденные участки, не нарушая нормальной работы остальной части линии. Оптимальные места установки секционирующих аппаратов определяются из условия максимального сокращения ущерба сельскохозяйственным потребителям от перерывов в электроснабжении. Для эффективного использования автоматического секционирования составляется карта секционирования, которая используется для выявления целесообразных мест установки секционирующих аппаратов, определения очередности секционирования отдельных линий, а также для расчета потребности в оборудовании.

Использование сетевого резервирования предполагает достаточно высокую надежность самих сетей. Наиболее целесообразна разомкнутая схема работы линий в нормальном режиме с автоматическим подключением неповрежденных участков к другому источнику энергии при авариях. Наряду с сетевым резервированием применяется местное резервирование, так как при неблагоприятных атмосферных условиях (гололеде, урагане, грозе и т. д.) возможно одновременное повреждение двух линий.

Резервные электростанции предназначаются для выборочного резервирования потребителей I и II категорий.

Для повышения надежности электроснабжения большое значение имеют также организационно-технические мероприятия, особенно в части, касающейся сокращения преднамеренных отключений.

Проведение ремонтных и других видов работ в сетях следует подчинить требованию минимального ущерба для потребителей, согласовав их с режимами работы сельскохозяйственных потребителей. Для сокращения числа отключений потребителей надо совмещать во времени работы, проводимые на разных степенях напряжения.

Эффективным средством повышения надежности электроснабжения является рациональная организация эксплуатации электрических сетей и установок. Поскольку точность технико-экономических расчетов надежности электроснабжения зависит от достоверности исходных данных, то важнейшая задача эксплуатации состоит в организации системы сбора и обработки информации для оценки показателей надежности электроснабжения и величин ущербов от перерывов в электроснабжении для конкретных потребителей (на основе тщательного экономического анализа фактических данных).

Важным фактором повышения надежности электроснабжения является строгое соблюдение обслуживающим персоналом правил технической эксплуатации. В частности, это касается обязательных регулярных обходов распределительных ВЛ и осмотров мачтовых ТП.

Историческая справка

Воздушные линии электропередачи с применением самонесущих изолированных проводов известны уже более 50 лет и находят все более широкое применение.

Впервые низковольтные изолированные провода были использованы в США и Канаде, а позднее в странах Западной Европы: Швеции, Финляндии, Норвегии и Франции. Начиная с 1980ых годов, в этих странах наблюдается значительное увеличение протяженности воздушных линий электропередач выполненных изолированными и защищенными проводами. Впервые СИП начал применятся в начале 1960ых годов.

Применение самонесущих изолированных и защищенных проводов является на сегодняшний день наиболее прогрессивным и перспективным путём развития электрических распределительных сетей.

По сравнению с традиционными воздушными линиями электропередачи (ВЛ) линии с применением самонесущих изолированных (СИП) и защищенных (ВЛЗ) проводов имеют ряд конструктивных особенностей — наличие изоляционного покрова на токоведущих проводниках, повышенная механическая прочность, прогрессивная сцепная и ответвительная арматура и др. Эти особенности обусловливают значительное повышение надёжности электроснабжения потребителей и резкое снижение эксплуатационных затрат, что, в свою очередь, и определяет высокую экономическую эффективность использования изолированных проводов в распределительных электрических сетях.

Проектирование воздушных линий электропередачи напряжением 620 кВ с защищенными проводами должно выполняться в соответствии с требованиями «Правил устройства электроустановок» (ПУЭ) [8], седьмое издание, глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ.

5.2 Общие сведения о воздушных линиях электропередачи напряжением 620 кВ с защищенными проводами

На сегодняшний день в качестве более перспективной и прогрессивной альтернативы неизолированным проводам для ВЛ 620 кВ можно рассматривать следующие варианты:

— защищенные провода СИП;

— силовые кабели для ВЛ 620 кВ;

Защищенный провод (марки СИП3, SAX, SAXW) представляет собой одножильный многопроволочный проводник, покрытый защитной оболочкой. Проводник изготавливается из алюминиевого сплава, защитный слой из светостабилизированного сшитого полиэтилена. Провод может изготавливаться с водонабухающим слоем под защитной оболочкой для защиты алюминиевой жилы от атмосферной влаги.

Силовой кабель для воздушных линий электропередачи напряжением 620 кВ (марка SAXKAW) представляет собой жгут из трех однофазных силовых кабелей, скрученных вокруг несущего троса. Токопроводящие жилы выполнены из уплотненного алюминия, несущий трос из стали. Кабели имеют продольную и поперечную защиту от проникновения влаги.

Универсальный кабель (марка MULTIWISKI) состоит из трех однофазных скрученных кабелей. Предназначен для монтажа на опорах ВЛ 620 кВ, для прокладки в земле в виде подземной кабельной линии, а так же для прокладки по дну искусственных водоемов и естественных водных преград в виде подводной кабельной линии. Силовые кабели для ВЛ 620 кВ и универсальные кабели являются менее распространенными на практике, их применение целесообразно в отдельных случаях при повышенных технических и (или) экологических требованиях к линиям электропередачи в конкретных условиях.

Читайте так же:
Выключатель пакетный вп2 16а

Применение защищенных проводов является наиболее приемлемым и распространенным техническим решением для ВЛ 620 кВ.

Разновидности проводов марки СИП

Существуют три основные системы самонесущих изолированных проводов:

— финская система «АМКА», где неизолированный нулевой проводник является несущим проводом. Модифицированная система «АМКА Т», с изолированным несущим нулевым проводником, эта система используется в Финляндии, Дальнем и Ближнем Востоке, Южной Америке.

— французкая система. По техническим характеристикам напоминает «АМКУ Т», системы отличаются сечением несущего нулевого проводника. Помимо Франции эта система используется в Бельгии, Испании, Италии и Греции.

— четырёхпроводная система, где механическую нагрузку несут все четыре проводника, все фазные и нулевой проводники изолированы, и механическая нагрузка распределена между ними поровну. Четырёхпроводная система главным образом применяется в Швеции, Германии, Австрии, Великобритании, Ирландии, Португалии, Польше и становится все более популярной в других странах.

ВГТ-110 (У1, УХЛ1*) Выключатель элегазовый колонковый (трехполюсное/однополюсное исполнение)

Выключатели серии ВГТ предназначены, для выполнения коммутационных операций (включе-ний и отключений), а также циклов АПВ при заданных условиях в нормальных и аварийных режимах в сетях трехфазного переменного тока 50 Гц с номинальным напряжением 110 кВ с заземленной нейтралью.

Конструкция

  • Выключатель состоит из трех полюсов (колонн), установленных на общей раме и управляемых одним пружинным приводом ППрМ или пружинно-гидравлическим приводом ППрГ-2. Возможно исполнение в однополюсном исполнении с управлением приводом ППрМ (По желанию заказчика возможна установка токовых расцепителей сети приводов в количестве 2х штук).
  • Конструкция взрывобезопасного исполнения.
  • Низкий уровень утечек — не более 0,5% в год.
  • Современные технологические и конструкторские решения в области применения и обработки материалов.
  • Стальные части выключателя и опорные металлоконструкции имеют коррозионно-стойкие покрытия.
  • Базовое исполнение выключателей без опорных металлоконструкций. Выключатели могут поставляться по заказу с высокими заводскими опорными стойками, а также с укороченными заводскими стойками для замены маломаслянных выключателей серии ВМТ.
  • Сохранение электрической прочности изоляции выключателя при напряжении равном 84 кВ в случае потери избыточного давления газа в выключателе.
  • Отключение емкостных токов без повторных пробоев, низкие перенапряжения.
  • Низкий уровень звуковых шумов при срабатывании.
  • Наличие в приводе автоматического управления двух ступеней обогрева (антиконденсатный и основной) шкафа привода и контроль их исправности.
  • Комплектующие изделия (приборы), в том числе высококачественные покрышки, закупаются у ведущих, хорошо зарекомендовавших себя отечественных и зарубежных производителей.
  • Конструкция выключателя позволяет осуществлять поставку Заказчику продукции в удобной таре минимальных объемов при минимальных транспортных затратах, а также обеспечить удобный и оперативный монтаж и ввод в эксплуатацию. Монтаж и ввод в эксплуатацию выполняется под руководством шеф-инженера.

Преимущества:

  1. Сохранение электрической прочности изоляции выключателя при напряжении равном 84 кВ в случае потери избыточного давления газа в выключателе.
  2. Отключение емкостных токов без повторных пробоев, низкие перенапряжения.
  3. Низкий уровень звуковых шумов при срабатывании (соответствует природоохранным требование).
  4. Низкие динамические нагрузки на фундаментные опоры.
  5. Надежность и безопасность пружинного привода ППрМ подтверждена многолетним опытом управления колонковыми выключателями.
  6. Наличие в приводе автоматического управления двух ступеней обогрева (антиконденсатный и основной) шкафа привода и контроль их исправности.
  7. Комплектующие изделия закупаются у ведущих, зарекомендовавших себя отечественных и зарубежных производителей.
  8. Блочно-модульная конструкция выключателя позволяет осуществлять поставку заказчику продукции в удобной таре с минимальным объемом при минимальных транспортных затратах, а также обеспечить удобный и оперативный монтаж и ввод в эксплуатацию, которые выполняются под руководством шеф-инженера.

Элегазовый силовой выключатель

Элегазовый выключатель  — это разновидность высоковольтного выключателя, коммутационный аппарат, использующий элегаз (шестифтористую серу, SF6) в качестве среды гашения электрической дуги; предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме, в нормальных или аварийных режимах, при ручном дистанционном или автоматическом управлении.

Содержание

Введение

На сегодняшний день, использование элегаза в качестве дугогасящей среды, более эффективной по сравнению со сжатым воздухом и маслом, является наиболее перспективным и быстроразвивающимся направлением развития выключателей переменного тока высокого и сверхвысокого напряжения. Основные достоинства элегазового оборудования определяются уникальными физико-химическими свойствами элегаза. При правильной эксплуатации элегаз не стареет и не требует такого тщательного ухода за собой, как масло.

Элегазовому оборудованию также присущи: компактность; большие межревизионные сроки, вплоть до отсутствия эксплуатационного обслуживания в течение всего срока службы; широкий диапазон номинальных напряжений (6-1150 кВ); пожаробезопасность и повышенная безопасность обслуживания.

Элегазовые выключатели начали усиленно разрабатываться с 1980 г. и имеют большие перспективы при напряжениях 110…1150 кВ и токах отключения до 80 кА. В технически развитых странах элегазовые выключатели высокого и сверхвысокого напряжения (110-1150 кВ) практически вытеснили все другие типы аппаратов. Также ведущие зарубежные фирмы практически полностью перешли на выпуск комплектных распределительных устройств с элегазовой изоляцией (КРУЭ) и элегазовых выключателей для открытых распределительных устройств на классы напряжения 110 кВ и выше.

Читайте так же:
Выключатель нагрузки 25а ip65

Конструкция элегазового выключателя

По конструкции различают колонковые и баковые выключатели. Колонковые ни внешне, ни по размерам принципиально не отличаются от маломасляных, кроме того, что в современных элегазовых выключателях 220 кВ только один разрыв на фазу. Баковые элегазовые выключатели имеют гораздо меньшие габариты по сравнению с масляными, имеют один общий привод на три полюса, встроенные трансформаторы тока.

Элегазовый выключатель состоит из трех основных частей:

  1. Полюс с фарфоровой изоляцией, состоящий из опорного изолятора и дугогасительной камеры;
  2. Пружинный привод;
  3. Рама и поддерживающие стойки.

Схематически, можно обозначить следующие основные части колонкового элегазового выключателя.

Основные составные части элегазовых выключателей

Дугогасительные Устройства

В элегазовых выключателях применяются различные способы гашения дуги в зависимости от номинального напряжения, номинального тока отключения и эксплуатационных особенностей в месте установки. В элегазовых дугогасительных устройств в отличие от воздушных дугогасительных устройств при гашении дуги прохождение газа через сопло происходит не в атмосферу, а в замкнутый объем камеры, заполненный элегазом при относительно небольшом избыточном давлении. По способу гашения дуги в элегазе различаются следующие элегазовые выключатели:

  • автокомпрессионные с дутьем в элегазе, создаваемым посредством компрессионного устройства (элегазовые выключатели с одной ступенью давления);
  • в которых гашение дуги в дугогасительных устройствах обеспечивается вращением её по кольцевым контактам под действием поперечного магнитного поля, создаваемого отключаемым током (элегазовые выключатели с электромагнитным дутьем);
  • с дугогасительным устройством продольного дутья, в которую предварительно сжатый газ поступает из резервуара с относительно высоким давлением элегаза (элегазовые выключатели с двумя ступенями давления);
  • с дугогасительным устройством продольного дутья, в которых повышение давления элегаза происходит за счет разогрева газовой среды дугой отключения в специальной камере (элегазовые выключатели с автогенерирующим дутьем).

Рассмотрим конструкцию и принцип работы наиболее часто используемых в выключателях 110-220кВ автокомпрессионных дугогасительных устройств.

Дугогасительная камера, наполненная элегазом под давлением, находится в верхней части полюса и состоит из неподвижного контакта, сопла, подвижного контакта, компрессионного цилиндра и закрепленного плунжера (Рис. 1). Во время операции «ОТКЛЮЧЕНИЕ» (Рис. 2) подвижный контакт вместе с компрессионным цилиндром опускается вниз. Неподвижный и подвижный контакты расходятся. В момент расхождения между неподвижным дуговым контактом и подвижным дуговым контактом возникает электрическая дуга. Движение компрессионного цилиндра сжимает элегаз к закрепленному плунжеру, создавая таким образом мощный поток элегаза над дугой. После достижения некоторого расстояния между контактами за счет потока элегаза существенно увеличивается диэлектрическая прочность разрыва, вследствие чего гасится дуга.

Надежность системы еще более увеличивается с использованием одиночного разрыва дуги и противоположного движения элегаза с его распылением, которые уменьшают количество подвижных элементов и вспомогательных систем в выключателе. Данный принцип показан на Рис. 3.

Привод выключателя

Приводы выключателей обеспечивают управление выключателем — включение, удержание во включенном положении и отключение. Вал привода соединяют с валом выключателя системой рычагов и тяг. Привод выключателя должен обеспечивать необходимую надежность и быстроту работы, а при электрическом управлении — наименьшее потребление электроэнергии. В элегазовых выключателя применяют два типа приводов:

  • пружинный привод, управляющим органом которого является кинематическая система рычагов, кулачков и валов;
  • пружинно-гидравлический привод, управляющим органом которого является гидросистема.

Рассмотрим конструкцию и принцип работы наиболее часто используемых в выключателях 110-220кВ пружинных приводов. Пружинный привод состоит из двух пружин — включающей и отключающей. Включающая пружина сжимается при помощи кулачка с храповым механизмом, которые управляются электрическим двигателем. На Рис. 4 показан выключатель во включенном положении (включающая пружина взведена). Обе пружины (включающая и отключающая) находятся во взведенном состоянии. Пружина отключения создает крутящий момент на рычаге в направлении против часовой стрелки. На данном этапе блокирующее устройство, которое называется «защелка фиксации отключения», предотвращает перемещение рычага.

Во время срабатывания электромагнита отключения рычаг освобождается от блокирующего устройства и вращается до момента достижения положения «ОТКЛЮЧЕНО». На Рис. 5 показан автоматический элегазовый выключатель в отключенном состоянии.

Пружина отключения находится в разряженном состоянии. Пружина включения создает крутящий момент на кулачке и храповом колесе в направлении против часовой стрелки. Во время подачи напряжения на электромагнит включения кулачок вращается в направлении против часовой стрелки, при этом рычаг вращается в направлении по часовой стрелке. Данное движение рычага приводит выключатель в положение «ВКЛЮЧЕНО» и одновременно заряжает пружину отключения. На Рис. 6 показан элегазовый выключатель во включенном состоянии (пружина включения разряжена). Сразу же после включения элегазового выключателя подается напряжение на двигатель заводки пружины включения. Пружина включения заводится с помощью храпового колеса, связанного с электродвигателем. После полной заводки пружины включения концевой выключатель отключает питание двигателя и защелка фиксации включения удерживает энергию сжатой пружины до момента следующего ее срабатывания.

Читайте так же:
Лепестки концевого выключателя моторедуктора

Выключатель элегазовый колонковый ВГТ-110 (У1, УХЛ1*)

Элегазовый выключатель — это разновидность высоковольтного выключателя, коммутационный аппарат, использующий элегаз в качестве среды гашения электронной дуги; предназначенный для оперативных подключений и отключений индивидуальных цепей или электрооборудования в энергосистеме.

Схема элегазового выключателя

Рисунок 1 – Схема элегазового выключателя

Элегазовые выключатели начали усиленно разрабатываться с 1980 г. и имеют большие перспективы при напряжениях 110…1150 кВ и токах отключения до 80 кА. В технически развитых странах элегазовые выключатели высокого и сверхвысокого напряжения (110-1150 кВ) практически вытеснили все другие типы аппаратов.

Элегазовые выключатели высокого напряжения выполняют работу за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает уведомление о том, что нужно отключить электрооборудование, контакты некоторых камер (если аппарат колонковый) размыкаются. Таким способом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на разные компоненты, но при этом и сама уменьшается из-за высокого давления в емкости.

В процессе использования элегазового выключателя выполняются циклы подключения и отключения коммутационного аппарата. При различных дейсвий с выключателем в режимных целях, в большинстве случаев, ток отключения располагается в границах обозначенных значений. Количество потенциально возможных операций зависимо от тока отключения устанавливает изготовитель. Для того, найти суммарное число операций отключения, существенно нужно пользоваться особой диаграммой взаимосвязи, которую можно найти в паспорте выключателя. Чем больше ток, тем меньшее количество возможных циклов включения/отключения элегазового выключателя. Выключатель специализирован для установки в ОРУ 110кВ, так как его номинальное рабочее напряжение – 126кВ. Выключатель делает работу в согласовании с заявленными производственным изготовителем при условиях:

  • установки на возвышенности над ярусом морского побережья не больше тысячи м-ов;
  • температуры окружающей среды от -350 С до +400 С;
  • установки в согласовании с необходимыми условиями завода-изготовителя;

Элегазовые выключатели различают

  • колонковые
  • баковые

УСТРОЙСТВО И РАБОТА ВЫКЛЮЧАТЕЛЯ

4.1 Выключатель ВЭБ-110 относится к электрическим коммутационным аппаратам высокого напряжения, в которых гасящей и изолирующей средой является элегаз (SFe).

4.2 Выключатель состоит из трех полюсов, установленных на общей раме и механически связанных друг с другом посредством передаточного устройства. Все три полюса выключателя управляются одним пружинным приводом типа ППрК, установленным на той же раме. Об­щий вид выключателя приведен на рисунке 1.

4.3 Полюса выключателя имеют автономную газовую систему.

4.4 Каждый полюс снабжен электроконтактным сигнализатором плотности показывающего типа.

Сигнализатор плотности имеет устройство температур­ной компенсации, приводящее показания давления к температуре 20°С, и три пары, замыкающихся при сни­жении плотности элегаза контактов (то есть при наличии утечек элегаза).

Одна пара контактов замыкается при снижении приведенного давления до 0,44 Мпаабо, подавая сигнал о необходимости пополнения полюса элегазом.

Две другие пары контактов одновременно замыкаются при снижении приведенного давления до 0,42 Мпаабс, подавая сигнал принудительного его отключения с запре­том на включение.

Примечание: Схема блокировки оперирования или обеспечения автоматического отключения выключателя с одновременным блокированием включения должна быть разработана проектной организацией.

4.5 Выключатель снабжен трансформаторами тока для подключения измерительных приборов и цепей релейной защиты.

4.6 Полюсы выключателя снабжены устройствами электроподогрева, которые включаются при температуре ми­нус 25+1 °С и отключаются при температуре минус 19…22°С.

4.7 Варианты исполнения схемы электрических соединений выключателя приведены на рис. 3 и 4. Схемы элек­трических соединений привода приведены на рис. 2.

4.8 Принцип работы выключателя основан на гашении электрической дуги потоком элегаза, который создает­ся за счет перепада давления, обеспечиваемого автогенерацией, т.е. за счет тепловой энергии самой дуги.

Включение выключателя осуществляется за счет энер­гии включающих пружин привода, а отключение — за счет энергии пружины отключающего устройства вык­лючателя.

Принцип гашения дуги

Успехи в разработках элегазовых выключтаелей откровенно оказали значительное воздействие на введение в эксплуатационную деятельность компактно размещенных на небольшой территории открытых распределительных устройствах размещенных на открытом воздухе, закрытых распределительных устройствах – размещенных в помещении и элегазовых комплектно распределительных устройствах. В элегазовых выключателях могут использоваться, разные методы гашения дуги зависимо от номинального напряжения, номинального тока отключения и объективных оценок энергосистемы (а также различных электроустановок).

В элегазовых дугогасительных устройствах , в сравнение от воздушных дугогасительных устройств, при гашении дуги истечение газа через сопло происходит не в воздушную среду, а в скрытный в себе объем камеры, наполненный элегазом при условно сравнительно маленьком лишнем давлении.

По методике гашения электрической дуги при выключении различают последующие элегазовые выключатели:

  • Автокомпрессионный элегазовый коммутационный аппарат , где существенно нужный крупно масштабный расход элегаза через сопла компрессионного дугогасительного устройства создается по ходу подвижной системы выключателя (автокомпрессионный выключатель с одной ступенью давления).
  • Элегазовый выключатель с электромагнитным дутьем, в котором гашение дуги в дугогасительном устройстве гарантируется вращением её по кольцевым контактам под воздействием магнитного поля, формируемого отключаемым током.
  • Элегазовый выключатель с камерами низкого и высокого давления, в каком принцип снабжения газового дутья через сопла в дугогасительном аппарате аналогичен воздушным дугогасительным устройствам (Элегазовый выключатель с 2 – мя ступенями давления).
  • Автогенерирующий элегазовый выключатель, где очень важный крупномасштабный расход элегаза через сопла дугогасительного устройства формируется за счет подогрева и увеличения давления элегаза дугой отключения в специально подготовленной камере (автогенерирующий элегазовый выключатель с одной ступенью давления).
Читайте так же:
Выключатель путевой взрывозащищенный вэлан

ВБ-110 Выключатели баковые элегазовые

Выключатель элегазовый ВБ-110-40/3150 УХЛ1 и У1 с пружинным приводом типа ППрА-2000 и встроенными трансформаторами тока предназначен для эксплуатации в открытых и закрытых распределительных устройствах в сетях переменного тока частотой 50 Гц с номинальным напряжением 110 кВ, в районах с умеренным и холодным климатом.

Выключатели выполнены с размещением дугогасительного устройства и трансформаторов тока во вводах, что соединяет в себе следующие преимущества: компактность при транспортировке и установке на объекте; высокая заводская готовность и низкие затраты на монтаж и наладку.Баки полностью теплоизолированы кожухом — для районов с холодным климатом.

Основные технические характеристики:

  • Номинальное напряжение Uном, кВ 110
  • Номинальный ток Iном, А 3150, 2500
  • Номинальный ток отключения Iо,ном, кА 40
  • Ресурс по механической стойкости 10 000 циклов

Встроенные трансформаторы тока ТВ-110:

  • Номинальный первичный ток, А от 100 до 2000
  • Номинальный вторичный ток, А 1 и 5
  • Количество вторичных обмоток до 6
  • Номинальная вторичная нагрузка, ВА от 5 до 50
  • Класс точности от 0,2S
  • Номинальная предельная кратность защитных обмоток до 30
  • Коэффициент безопасности приборов измерительных обмоток 10
  • Дугогасительное устройство размещено внутри ввода
  • Трансформаторы тока размещены в среде SF6 внутри второго ввода
  • Бак, объединяющий вводы, имеет жесткую, компактную, шарообразную конструкцию, что в 2,5 раза снижает затраты на баковый конструктив
  • Для исполнения УХЛI (-60 °С) выключатель имеет кожухи, полностью тепло- и ветроизолирующие шарообразный бак
  • Габариты выключателя позволяют доставлять изделие на объект в полной заводской готовности обычным автотранспортом.
  • Минимальное обслуживание
  • Высокие эксплуатационные характеристики
  • Пригоден для эксплуатации во всех климатических зонах
  • Снабжен простым и надежным приводом
  • Высокая сейсмостойкость

Баковый элегазовый выключатель ВБ-110-40 отвечает требованиям следующих нормативных документов:

  • Стандарты МЭК
  • ГОСТ Р 52565-2006 «Выключатели переменного тока на напряжения от 3 до 750 кВ»
  • ГОСТ 1516.3-96 «Электрооборудование переменного тока на напряжения от 1 до 750кВ. Требования к электрической прочности изоляции»
  • ГОСТ 8024-90 «Аппараты и электротехнические устройства переменного тока на напряжение свыше 1000В. Нормы нагрева при продолжительном режиме работы и методы испытаний»
  • ГОСТ 15150-69 «Машины, приборы и другие технические изделия. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды»
  • ГОСТ 12.2.007.0-75 12.2.007.3-75 «Изделия электротехнические. Требования по безопасности»
  • ГОСТ 16962.1-89 «Изделия электротехнические. Методы испытаний на устойчивость к климатическим внешним воздействующим факторам»
  • ГОСТ 1516.2-97 «Электрооборудование и электроустановки переменного тока на напряжение 3кВ и выше. Общие методы испытаний электрической прочности изоляции»
  • ПБ 10-115-96 «Правила устройств и безопасной эксплуатации сосудов, работающих под давлением»
  • ТУ 3414-003-00213606-2009

Параметры сквозного тока короткого замыкания:

— в горизонтальной плоскости вдоль оси полюса (ввода)

Габаритные размеры выключателей баковых серии ВБ

5. Достоинства и недостатки

Учитывая вышеупомянутое, между плюсами выключателей элегазового типа можно отметить следующее:

  • возможность установки в электроустановках как закрытого, так и открытого выполнения буквально всех классов напряжения;
  • отмечается простота и надежность конструкции в эксплуатации;
  • высокая интенсивность скорости срабатывания;
  • низкие динамические нагрузки на фундаментные опоры;
  • неплохая отключающая способность;
  • небольшие габаритные пропорции и сумма веса;
  • наличие в приводе автоматического управления двух ступеней обогрева;
  • большой коммутационный ресурс контактной системы;

Недостатки элегазовых выключателей:

  • требуется более внимательное отношение к использованию и учету элегаза;
  • высокие необходимые условия к качеству элегаза;
  • необходимость специально подготовленных устройств для заполнения, перекачки и фильтрации элегаза;
  • относительно высокая стоимость элегаза;
  • сложность и накладность изготовления — при производственном изготовлении неизбежно нужно соблюдать высокоё качество аппарата;
  • дороговизна конструкции и второстепенных элементов;
  • при выводе из строя выключателя в режиме ЧП, починка данного аппарата может быть не актуальной.

6. Технические характеристики

В таблице приведены технические характеристики выключателей ВГТ — 110 кВ. Таблица 5.1 – Основные технические данные выключателя ВГТ — 110 кВ

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector