Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические источники света

Электрические источники света

Источники света — это излучатели электромагнитной энергии и видимой части спектра. Источники света характеризуются электрическими и светотехническими параметрами — напряжением, мощностью, световым потоком, световой отдачей, силой света и продолжительностью горения.

Световой поток — это величина, которой оценивается мощность оптического излучения. Например, световой поток электролампы накаливания мощностью 25 Вт напряжением 220 В равен около 220 лм.

Мощность лампы — количество электрической энергии, потребляемой лампой в единицу времени.

Освещенность (Е) — световой поток, приходящийся на единицу освещаемой поверхности. Единицей освещенности является люкс (лк).

Сила света определяет плотность светового потока в данном направлении, и равна отношению светового потока, распространяющегося от источника внутри телесного угла к этому углу. Единицей силы света является кандела (кд).

Поверхностная плотность силы света в заданном направлении называется яркостью. Единицей яркости является кандела на квадратный метр — кд/м².

Световая отдача (лм/Вт) — отношение светового потока лампы к ее мощности. Эта величина характеризует экономичность лампы. При одинаковой мощности ламп накаливания, но при различном номинальном напряжении световая отдача ламп также различна. Так, для лампы накаливания при номинальном напряжении 127 В световая отдача примерно на 10% выше, чем для лампы той же мощности на напряжение 220 В.

Средняя продолжительность горения (ч) — среднее арифметическое число часов продолжительности горения партии ламп. Как правило, срок службы ламп накаливания равен 1000 ч горения при нормальном напряжении сети.

Современные источники света подразделяются на две основные группы — лампы накаливания и газоразрядные.

Виды ламп

Рис. 44. Лампа накаливания (а), ДРЛ (б) и люминесцентный (в) источники света:
1 — колба; 2 — нить накала; 3 — кварцевая горелка; 4 — слой люминофора; 5 — цоколь; 6 — трубка стеклянная.

Лампа накаливания (рис. 44, а) — это источник света, в котором преобразование электрической энергии в световую происходит за счет накаливания тугоплавкого проводника электрическим током. Лампа накаливания представляет собой стеклянную колбу, внутри которой в вакууме или инертном газе находится нить из тугоплавкого проводника. Чаще всего нить накала выполняют в виде одинарной или двойной спирали.

Лампы, из объема которых выкачан воздух, называются вакуумными, в отличие от газонаполненных, колбы которых заполняются инертным газом (смеси азота, аргона, ксенона, криптона). Газонаполненные лампы по сравнению с вакуумными имеют лучшую светоотдачу, т. е. газ, находящийся в колбе под давлением, препятствует испарению вольфрама. Это позволяет повысить температуру накала, за счет чего увеличивается световой поток лампы и улучшается ее цветность.

Недостатком ламп накаливания является низкий коэффициент полезного действия. В энергию светового потока превращается только 4% всей потребляемой электрической энергии, а остальная часть преобразуется в тепловую энергию, излучаемую лампой.

Электрические, светотехнические характеристики и продолжительность горения ламп накаливания зависят от изменения питающего напряжения. При пониженном напряжении уменьшается световой поток, а при повышенном — резко снижается продолжительность горения лампы : при превышении напряжения на 15% выше номинального лампы выходят из строя.

Несмотря на относительно малую среднюю продолжительность горения и невысокую световую отдачу (10-13 лм/Вт) лампы накаливания широко применяются в различных областях народного хозяйства. Это объясняется простотой и удобством их эксплуатации, универсальностью применения, удовлетворительным спектром излучения, компактностью конструкции и дешевизной. Промышленность выпускает лампы накаливания общего назначения на следующие стандартные мощности (Вт): 15, 25, 40, 60, 75, 100, 150, 200, 300, 500, 750, 1000, 1500.

Для освещения открытых площадей и территорий предприятий применяют галогенные лампы накаливания. Конструктивно лампа устроена в виде кварцевой трубки, заполненной инертным газом с добавкой галогенов или их соединений, обеспечивающих замедленное испарение тела накала. Галогенные лампы при одинаковой с обычной лампой накаливания мощностью имеют меньше размеры, значительно более высокую световую отдачу (22-30 лм/Вт), срок службы их в два раза превышает обычные лампы накаливания. Промышленность выпускает галогенные лампы мощностью от 500 Вт до 20 кВт.

Газоразрядные источники света — лампы, в которых излучение диапазона длин волн возникает в результате электрического разряда в среде инертных газов, паров металлов или их смесей (рис. 44, б, в).

К газоразрядным источникам света относятся люминесцентные лампы, дуговые ртутные лампы с люминофором (ДРЛ), ксеноновые газоразрядные лампы (ДКсТ), дуговые ртутные лампы с иодидами (ДРИ), дуговые натриевые лампы высокого давления (ДНаТ).

Люминесцентная лампа — это газоразрядный источник света, световой поток которого определяется свечением люминофоров под воздействием ультрафиолетового излучения. Основные светотехнические характеристики люминесцентных ламп приведены в таблице ниже.

Светотехнические характеристики люминесцентных ламп

ПараметрТип лампы
ЛБ-20ЛБ-40ЛБ-80ЛБ-125
Мощность, Вт204080125
Световой поток, лм1180300045506500
Световая отдача, лм/Вт49625452
Срок службы, ч10000100001000010000

Конструкция люминесцентной лампы (рис. 44, в) обеспечивает длительное, устойчивое ее горение. Стеклянная трубка лампы (прямая, U-образная, кольцевая или другой формы) изнутри покрыта тонким слоем люминофора и концы ее герметично запаяны. Из трубки удален воздух и внутрь ее введен при низком давлении инертный газ —аргон и капля ртути. В торцах трубки укреплены вольфрамовые специальные электроды с оксидным покрытием, которое служит для получения необходимой электронной эмиссии. При подключении лампы к источнику переменного тока происходит нагрев электродов, ртуть испаряется и между электродами возникает электрический разряд. Разряд сопровождается интенсивным ультрафиолетовым излучением, под действием которого люминофор испускает свет. Различную цветность люминесцентных ламп можно получить путем изменения состава люминофора.

Люминесцентные лампы широко применяются для общего освещения. При этом их световая отдача, достигающая 75 лм/Вт, и срок службы в несколько раз больше, чем у ламп накаливания того же назначения.

Так, люминесцентная лампа мощностью 40 Вт имеет световой поток 3000 лм и средний срок службы 10000 ч, в то время, как лампа накаливания той же мощности имеет световой поток 460 лм и срок службы 1000 ч. Через 4000 ч горения световой поток люминесцентной лампы остается достаточно большим (2250 лм для лампы 40 Вт), в то время как лампа накаливания уже отслужила свой срок.

Недостатком этих ламп являются периодические пульсации их светового потока с частотой, равной удвоенной частоте электрического тока. Человеческий глаз не в состоянии заметить эти мелькания света благодаря зрительной инерции, но если частота движения детали совпадает с частотой импульсов света, то деталь может показаться неподвижной или медленно вращающейся в противоположную сторону из-за стробоскопического эффекта. В этом случае лампы включают в различные фазы трехфазного тока (пульсация светового потока будет в разные полупериоды).

Люминесцентные лампы при включении в сеть снабжаются пускорегулирующими аппаратами, так как при непосредственном включении лампы в сеть любое кратковременное снижение напряжения приводит к резкому нарастанию тока и перегоранию ее электродов.

Применение люминесцентных ламп в наружных осветительных установках связано с рядом трудностей. Для работы лампы при пониженной температуре необходимо значительное повышение напряжения зажигания: при снижении температуры ниже 0°С световой поток уменьшается в 6—10 раз. Поэтому при использовании люминесцентных ламп для освещения территорий, улиц, площадей применяют специальные светильники с двумя или тремя лампами, групповой теплоизоляцией и последовательным включением ламп с одним пускорегулирующим аппаратом. Эти светильники эффективно работают в диапазоне температур от +35 до -20 °С. При более низкой температуре применяют в светильниках специальные дополнительные трубчатые нагреватели, которые обеспечивают поддержание оптимального теплового режима на стенках ламп.

Промышленность выпускает около 100 различных типоразмеров люминесцентных ламп общего назначения. Наиболее распространенные типы ламп мощностью 15, 20, 30 Вт на напряжение 127 В и 40, 80, 125 Вт на напряжение 220 В. Средняя продолжительность горения ламп составляет 10000 ч.

В обозначениях маркировки люминесцентных ламп применяются следующие буквы: Л — люминесцентная, Д — дневного, Б — белого, ХБ — холодно-белого, ТБ — тепло-белого света, Ц — улучшенной цветопередачи, А — амальгамные.

Лампы дуговые ртутные с люминофором (ДРЛ) состоят из цоколя 5, баллона (колбы) 1 и кварцевой горелки 3 (рис. 44, б). Кварцевая трубчатая горелка с двумя основными и двумя поджигающими электродами заполнена чистым аргоном под давлением 2,5 —4,5 кПа и дозированным количеством ртути (40 — 60 мг). Цоколь обычного резьбового типа. Колба, внутренняя поверхность которой покрыта люминофором, служит для защиты деталей горелки от окисления и механических повреждений, предотвращает выход ультрафиолетового излучения наружу и обеспечивает необходимый температурный режим на горелке и слое люминофора. Колба после откачки воздуха заполняется аргоном до давления в несколько десятков кПа.

При подаче напряжения на электроды лампы в парах ртути образуется электрический разряд, создающий интенсивное ультрафиолетовое излучение в сине-зеленой части спектра. Под воздействием ультрафиолетовых лучей люминофор излучает световой поток оранжево-красного цвета, создавая смешанный с основным световым потоком видимый человеческим глазом белый свет с зеленоватым оттенком. Оптимальная температура для люминофоров ламп ДРЛ равна 250 — 350 С.

Лампы ДРЛ имеют компактную конструкцию, высокую концентрацию светового потока, достаточно большую удельную световую отдачу (40 — 55 лм/Вт), практическую независимость светового потока от температуры окружающей среды, высокий срок службы (6000 — 8000 ч). Однако срок службы ламп зависит от числа включений. Например, при работе лампы в 10-ти часовом режиме в сутки их срок службы снижается в 1,5 раза по сравнению с режимом непрерывного горения.

Светотехнические характеристики ламп ДРЛ

ПараметрТип лампы
ДРЛ-80ДРЛ-125ДРЛ-250ДРЛ-400ДРЛ-700
Мощность, Вт80125250400700
Световой поток, лм32005600110001900035000
Световая отдача, лм/Вт3538,5404547
Ток, А0,81,1152,153,255,45
Срок службы, ч75007500750075007500

Промышленность выпускает лампы мощностью 80, 125, 250, 400, 700, 1000 и 2000 Вт со световым потоком от 3200 до 50000 лм.

При использовании ламп ДРЛ в установках наружного освещения следует учитывать их характеристики зажигания. При температурах окружающего воздуха +20 С лампы должны загораться при напряжении до 180 В, при снижении температуры до -25 °С потребуется напряжение 205 В, 250 и 300 В для ламп мощностью 400, 700 и 1000 Вт соответственно. Для районов страны с пониженными температурами (Крайний Север, Сибирь) выпускают специальные лампы в северном исполнении мощностью 125-1000 Вт (например, типы ДРЛ-125 ХЛ1, ДРЛ-250 ХЛР).

Лампы дуговые ртутные иодидные (ДРИ) — конструктивно напоминают лампы ДРЛ, но внешняя колба не покрыта люминофором, кварцевая горелка более короткая и имеет на концах теплоотражающее покрытие, а внутрь колбы горелки вводятся наряду со ртутью и наполняющим газом аргоном иодиды некоторых металлов (натрия, таллия, индия и др.). Введение этих металлов позволяет варьировать в широких пределах спектральный состав излучения разряда, увеличивать видимую часть излучения и отказываться от использования люминофора. Световая отдача этих ламп достигает 90-100 лм/Вт, что в 1,5-2 раза выше, чем у ламп ДРЛ. Мощности ламп ДРИ соответствуют обычному ряду мощности ламп ДРЛ, а их электрические характеристики практически совпадают или очень близки. Срок службы ламп ДРИ меньше, чем у ламп ДРЛ и составляет 3000—5000 ч. Катоды в лампах ДРИ активируют окисью или торием, поэтому в сети для зажигания ламп даже при положительной температуре требуется повышенное напряжение.

Дуговые натриевые лампы высокого давления (ДНаТ) — представляют собой цилиндрическую разрядную трубку из светопропускающей поликристаллической окиси алюминия. Концы трубки герметично закрыты ниобиевыми колпаками, на которых укреплены активированные вольфрамовые электроды. Внутрь трубки введено дозированное количество натрия, ртути и газа ксенона. Внешний баллон для теплоизоляции имеет глубокий вакуум 10 -4 — 10 -5 Па. В рабочем состоянии давление паров натрия составляет 25 — 27 кПа, при этом лампа излучает мощный световой поток с заметно желтым светом. Световая отдача ламп составляет 115-125 лм/Вт, а средняя продолжительность горения 15-20 тыс. ч, что дает возможность применять их для освещения больших открытых пространств: высокопролетных цехов, карьеров, строительных площадок, территорий предприятий, площадей и т. д.

Лампа накаливания

Лампа накаливания (ЛН) — электрический источник света, светящимся телом которого служит так называемое тело накала (ТН, проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX — первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала – углеродного волокна. (Приложение 2. Устройство лампы накаливания).

Принцип действия. В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока (тепловое действие тока). Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более красным кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 5770 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине ТН помещено в колбу, из которой в процессе изготовления ЛН откачиваются атмосферные газы. Наиболее опасными для ЛН являются кислород и водяные пары, в атмосфере которых происходит быстрое окисление ТН. Первые ЛН изготавливали вакуумными; в настоящее время только лампы малой мощности (для ЛОН — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ЛН наполняют газом (азотом, аргоном или криптоном). Повышенное давление в колбе газополных ламп резко уменьшает скорость разрушения ТН из-за распыления. Колбы газополных ЛН не так быстро покрываются тёмным налётом распылённого материала ТН, а температуру последнего можно увеличить по сравнению с вакуумными ЛН. Последнее позволяет повысить КПД и несколько изменить спектр излучения.

КПД и долговечность. Почти вся подаваемая в лампу энергия превращается в излучение теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5%.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95%.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной. (Приложение 3. Светоотдача и КПД).

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Преимущества и недостатки ламп накаливания.

1. Преимущества:

— ненужность пускорегулирующей аппаратуры;

— при включении они зажигаются почти мгновенно;

— отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;

— возможность работы как на постоянном (любой полярности), так и на переменном токе;

— возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

— отсутствие мерцания и гудения при работе на переменном токе;

— непрерывный спектр излучения;

— устойчивость к электромагнитному импульсу;

— возможность использования регуляторов яркости;

— нормальная работа при низких температурах окружающей среды.

2. Недостатки:

— низкая световая отдача;

— относительно малый срок службы;

— резкая зависимость световой отдачи и срока службы от напряжения;

— цветовая температура лежит только в пределах 2300 – 2900 к, что придает свету желтоватый оттенок;

— лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт — 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Отслужившие лампы накаливания не содержат вредных для окружающей среды веществ и могут утилизироваться как обычные бытовые отходы. Единственным ограничением является запрет на их переработку вместе с изделиями из стекла.

Лампа накаливания световое действие тока

Разнообразие источников света довольно велико, но наибольшее распространение и применение обрела лампа накаливания. Возникает вопрос: «Почему именно она получила такую огромную популярность и встречается на каждом шагу?» Однако, мы видим и другие лампы, а раз есть альтернативы ей, значит и недостатки найдутся.

Для того чтобы оценить все преимущества и недостатки, необходимо рассмотреть строение источника света.

Лампочка накаливания состоит из:

1 – тонкая стеклянная колба;
2 – пространство колбы;
3 – тело накала;
4 – держатели, предназначенные для удерживания тела накала;
5, 6 – токовые вводы (электроды);
7 – ножка;
8 – основание цоколя;
9 – контактное дно цоколя;
10 – изолятор.

Разнообразность форм колб в большинстве случаев объясняется эстетическим видом, а иногда возможностью удобной установки. Функцией колбы является защита тела накала от атмосферных осадков.

Изначально, когда электрические источники света только начали изготовлять, то в стеклянной колбе лампы создавался вакуум. Сейчас же такую технологию применяют только для малой мощности (до 25 Вт), а световые источники большей мощности наполняют инертным газом (аргон, азот, криптон). Наполнение колбы инертным газом или создание в ней вакуума делается по двум причинам :

— защита тела накала от влияния внешней среды, потому что на воздухе оно быстро окислится и выйдет из строя;
— для уменьшения потерь тепла, ведь имеет место теплопроводность материалов (для сбережения тепла производят выбор газа с большей молярной массой).

Правильно говорить, именно, «Тело накала» , потому как его исполнение очень разнообразно. Встречаются нити, спирали, двойные спирали. Наиболее часто используется нить накала – проволока круглого сечения.

В эпоху зарождения ламп накаливания, тело накала изготовлялось из угля, сейчас же выполняется исключительно из вольфрама, или же из осмиево-вольфрамового сплава, что бывает реже.

При подаче напряжения на лампочку, нить накала комнатной температуры, то есть сопротивление ее в десяток раз меньше рабочего. По этому, при включении происходит скачек тока (10-14 номинальных значений) . По мере нагрева токопроводящей нити, сопротивление возрастает, и ток понижается до номинального значения. Когда же тело накала изготовлялось из угля, характеристика была обратной, при нагреве сопротивление уменьшалось, и с ростом температуры лампочка светилась все ярче.

Цоколи ламп имеют очень широкий ряд исполнения, а их размеры стандартизованы. Цифры в названии означают наружный диаметр цоколя в мм. У бытовых ламп наибольшее распространение получили:

— цоколь Эдисона — Е14
— миньон — Е27

В некоторых странах принято напряжение сети 100 В, и во избежание случайного ввинчивания лампы не подходящего напряжения, изготавливаются лампы с иными цоколями.

Мы привыкли видеть резьбовые цоколи, но есть и цоколи без резьбы, удерживание таких устройств в патроне происходит за счет трения или нерезьбового сопряжения (применяются в автомобилях).

Рисунок 2 – а) резьбовой ; б) цоколь без резьбы

Принцип действия лампы накаливания основан на эффекте накаливания проводника при пропускании через него электрического тока. Когда ток протекает, температура тела накала резко увеличивается, и чем выше температура, тем ярче свет. Чем меньше температура тела накала, тем свет более «красный» — теплый, чем выше – ближе к белому свечению. Для получения видимого диапазона света, необходимо нагреть тело порядка нескольких тысяч градусов.

Температура Солнца — 5770 К, при такой температуре происходит выделение наибольшего количества видимого излучения. Но такое значение температуры недостижимо (любой известный материал плавится и протекание тока стает невозможным).

Лишь малая часть потребляемой из сети энергии превращается лампой накаливания в видимый свет, основная доля энергии расходуется на нагрев нити и излучения света в невидимом диапазоне для человеческого глаза. Чтоб увеличить коэффициент полезного действия (КПД) лампы накаливания, нужно увеличить температуру тела накала , но при этом она ограничивается температурой плавления материала.

Температура плавления, применяемых в лампах накаливания материалов: Вольфрам — (3410°C), Осмий — (3045°C).

Рабочая температура вольфрамовой нити находится обычно в пределах 2700-3000К .

Максимальный КПД лампы накаливания достигается при температуре нити – 3400К и составляет приблизительно 15%, а при номинальной температуре, которая составляет 2700К, всего каких-то 4-5%.

С увеличением температуры, КПД возрастает, а вот ее долговечность – уменьшается. Так, при температуре в 2700К, срок службы лампы накаливания составляет около 1000 часов, а при температуре 3400К – пару часов.

Пониженное напряжение уменьшает КПД в 4-5 раз, зато срок службы лампы увеличивается в сотни раз . Например, в таком режиме можно их использовать для дежурного освещения, где не требуется высокое качество освещения. В этом случае используют последовательное подключение лампочек, также возможный вариант — включение через диод, чтобы поступала только положительная полуволна (действующее значение напряжения и тока будет меньше, световая отдача уменьшится, появится мерцание, но срок службы лампы значительно возрастет, а также будет экономия электроэнергии).

Рисунок 3 – Влияние входного напряжения на световую отдачу и срок службы

На рисунке 3 представлены приближенные, но наглядные зависимости. Рассмотрим конкретную точку, от которой на оси проведены пунктирные линии. При увеличении питающего напряжения на 6,5% мы получаем увеличение световой отдачи на 20%, но при этом срок службы лампочки сокращается в 2 раза.

Срок эксплуатации лампы накаливания ограничивается, прежде всего, испарением материала тела накала. Испарение происходит неравномерно, то есть появляются проблемные участки, где меньшая толщина нити. При этом сопротивление на них еще больше повышается и износ в этих местах происходит интенсивней, пока тело накала не расплавится вовсе. Колба темнеет вследствие осаждения металла нити накала. Повышенное давление подавляет такой эффект и увеличивает срок службы и КПД.

Минусом рассмотренного вида ламп является малая световая отдача, она самая низкая из всех существующих электрических источников света и лежит в диапазоне 4-15 лм/Вт.

Из чего состоит лампочка накаливания — схема и устройство

Для создания искусственного освещения часто используют обычную лампу накаливания. Этот элемент знаком всем еще со времен СССР. Стеклянная колба, патрон и спираль — основные видимые части продукта. Как устроена лампа накаливания изнутри, интересно и мастеру-новичку, и профессионалу.

История изобретения лампочки

Изделие проектировалось и дорабатывалось многими учеными в разные периоды. Первая электрическая дуга была зажжена ученым Петровым В.В. в 1802 году. Изобретение состояло из двух угольных стержней, которые подключались к полюсам гальванической батареи. В момент их сближения возникал электрический разряд, и над элементами формировалась светящаяся дуга. Применение такой лампы в быту было невозможным по ряду причин – неудобство конструкции, быстрое перегорание угольных стержней. Зато мировые ученые начали понимать, из чего сделать лампу.

Спустя 70 лет в 1872 году Лодыгин А.Н. получил патент на лампу накаливания. В качестве спирали в ней был использован стержень ретортного угля, который находился под стеклянным колпаком.

Уже в 1880 году 10 мая лампочкой Лодыгина было обустроено уличное освещение в Санкт-Петербурге на Литейном мосту. Срок службы источника света составлял всего 2 месяца (пока не перегорал угольный стержень).

В 1910 году было принято решение скручивать вольфрамовую нить в спираль для увеличения ресурса её службы. Таким образом, изделие теперь работает вместо первоначальных 50-100 часов целых 1000 ч.

Принцип теплового получения излучения используют и при производстве галогеновых ламп дневного света.

Из чего состоит лампа

Строение и схема лампы накаливания выглядят так:

  • стеклянная колба грушевидной или округлой формы;
  • тело накала (вольфрамовая или угольная нить), расположенное в ней на двух держателях-крючках;
  • два электрода;
  • предохранитель;
  • ножка;
  • цоколь (корпус) с изолятором;
  • его контакт (донышко).

Окисление вольфрамовой нити (спирали, тела накала) исключается за счет её помещения в вакуум или газообразную среду. Ими наполняют стеклянную колбу.

Электротехнические параметры

Все лампочки производятся для разных напряжений. Поскольку тугоплавкий металл вольфрам имеет малое удельное сопротивление, для устройства светового элемента нужен длинный провод. Таким образом, нить накаливания в электрической лампочке часто достигает 50 микрометров. При включении света через тело накала проходит ток, превышающий рабочий в 10-14 раз. Чем больше прогревается нить, тем сильнее увеличивается сопротивление нити и снижается сила тока.

Принцип работы электрической лампы накаливания

Рассмотрев, из чего состоит лампочка, важно понять и принцип её работы:

  • При включении света через донышко цоколя к телу накала проходит ток.
  • Вольфрамовая нить сильно разогревается после замыкания электрической цепи, что приводит к её свечению.
  • На этот момент температура нити достигает 570 градусов.
  • Таким образом спектр свечения лампочек сдвинут в сторону теплых температур.

Для справки: чем ниже градус вольфрамовой/угольной нити, тем ниже будет доля энергии, которая подходит к телу накала и провоцирует его видимое излучение. Ретро-лампы тем и отличаются, что медленнее и слабее прогревают спираль.

Разновидности световых элементов

Классифицируют все изделия по разным параметрам. По типу наполнения колбы различают такие лампы:

  • самые простые вакуумные (при их изготовлении из колбы отсасывается весь воздух);
  • наполненные газом аргоном;
  • ксенон-галогенные;
  • наполненные криптоном.

По типу предназначения лампочки делят на такие виды:

    Декоративные. Работают по привычному принципу. Колба выполнена в виде свечи или шара.

По количеству нитей накаливания все элементы бывают:

  • Двухнитевые. Имеют одно тело накала для дальнего (сильного) света и одно – для ближнего (слабого) освещения. Используются в авто, авиации, ж/д светофорах, в звездах Московского Кремля.
  • Однонитевые. Привычные лампочки с вольфрамовым телом накала.

Тело накала малоинерционных изделий имеет крайне тонкую спираль. Ранее они применялись для систем оптической записи звука. Существуют также нагревательные лампы, которые используют для устройства сушильных камер, электроплит, оргтехники и др.

Преимущества и недостатки

Лампы накаливания имеют ряд своих достоинств:

  • приемлемую стоимость;
  • компактные габариты;
  • мгновенную реакцию на включение/выключение;
  • отсутствие мерцания, неблагоприятно воздействующего на глаза;
  • инертность к скачкам напряжения;
  • мягкая гамма свечения, способствующая расслаблению, созданию атмосферы уюта;
  • хороший индекс цветопередачи, равный Ra 90;
  • работа в любых условиях (в том числе при высокой влажности);
  • постоянная доступность для потребителя;
  • экологичность;
  • отсутствие шума при работе;
  • инертность к ионизирующей радиации.

К недостаткам ламп накаливания относят такие моменты:

  • хрупкость, чувствительность к механическим повреждениям;
  • сравнительно малый срок эксплуатации;
  • низкий КПД, не превышающий 5-7% (отношение расходуемой мощности к видимому излучению);
  • пожарная опасность при прямом контакте лампы с горючими веществами (текстиль, солома и др.);
  • вероятность взрыва при термическом ударе или разрыве спирали под напряжением.

Несмотря на все перечисленные недостатки, привычные лампочки уверенно сохраняют за собой занятые позиции. Более 70% населения СНГ все еще пользуются ими.

КПД и долговечность

Разбирая, как устроена лампа накаливания, важно понять коэффициент ее полезного действия. При световой температуре 3400 Кельвинов КПД элемента составляет 15%. Имеется в виду отношение потребляемой мощности к видимому человеческим глазом световому излучению. При температуре 2700 К (средняя нормальная для обычной бытовой лампы) коэффициент полезного действия равен всего 5%.

Чем выше температура накала, тем большим будет КПД. Но при этом срок службы изделия снижается. К примеру, если повысить напряжение на 20%, яркость освещения станет сильнее — повысится КПД лампочки, однако срок эксплуатации сократится на 90-95%. Соответственно, снижение напряжения приводит к уменьшению коэффициента полезного действия изделия и увеличению срока его эксплуатации.

Как увеличить срок службы лампы накаливания

В среднем обычная бытовая лампочка накаливания служит 700-1000 часов. Но на деле элемент перегорает гораздо быстрее. Чтобы продлить срок службы лампочки, нужно предотвратить провоцирующие перегорание спирали факторы.

  • Учитывать диапазон напряжений. Его указывают на колбе изделия. Как правило, он равен 125-135 Вт, 220-230 Вт, 2,3-2,4 кВт. При превышенном напряжении в доме изделие будет перегорать скорее. К примеру, в квартире максимальное напряжение 220 В, а лампа куплена с диапазоном 125-135 В. Здесь нить накала перегорит однозначно быстрее, поскольку увеличивается КПД изделия.
  • Устранить неисправность патрона. Если лампы перегорают часто, стоит осмотреть его, перепроверить контакты. При необходимости патрон меняют.
  • Исключить вибрации. Они приводят к быстрому перегоранию вольфрамовой нити. Поэтому перенос мобильных светильников лучше выполнять с выключенной лампочкой.

Для продления срока службы лампы накаливания можно снизить напряжение в сети всего на 7-8%. В этом случае изделие проработает дольше в 3-3,5 раза при экономном расходе электроэнергии.

голоса
Рейтинг статьи
Читайте так же:
Как подключить лампочку если есть только провода
Ссылка на основную публикацию
Adblock
detector