Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

8. 8. 2. Выбор автоматического выключателя

8.8.2. Выбор автоматического выключателя

Простейшими устройствами для автоматической защиты от повреждений при нарушении нормального режима работы в установках с рабочим напряжением до 1000 В. являются автоматические воздушные выключатели (автоматы). Эти аппараты могут защищать установку от перегруза и от токов короткого замыкания. В зависимости от назначения в него могут быть встроены различные расцепители:

электромагнитные (защита от токов КЗ);

тепловые (защита от перегруза);

комбинированные (защита от токов КЗ и перегруза).

Основными элементами автомата являются контактная система, система дугогашения, привод, и расцепители.

Автоматы с тепловыми и комбинированными расцепителями имеют обратно зависящую характеристику, это означает, что время, в течение которого они срабатывают, зависят от тока перегруза или короткого замыкания протекающего через автомат, чем больше ток, тем быстрее автомат отключает линию.

Автоматический выключатель предназначен для редких оперативных включений, 3-5 переключения в час.

Автоматические выключатели делятся на три вида:

— нормальные, время срабатывания ;

— селективные с регулируемой выдержкой времени, время срабатывания;

быстродействующие, время срабатывания ;

Автоматические выключатели выбираются прежде всего по номинальным значениям напряжения и тока. Затем определяются токи уставки теплового и электромагнитного расцепителей.

При выборе автоматических выключателей следует учитывать следующие условия:

где — номинальное напряжение автоматического выключателя.

— номинальное напряжение защищаемой установки.

где— номинальный ток автоматического выключателя.

— номинальный ток защищаемой установки.

Расчет уставки электромагнитного расцепителя. Электромагнитный расцепитель автомата защищает электроустановку от коротких замыканий. Ток уставки электромагнитного расцепителя определяется из следующих соображений: автомат не должен срабатывать от пусковых токов двигателей электроустановки Iпуск, а ток срабатывания электромагнитного расцепителяI э.м.р. выбирается кратным току срабатывания теплового расцепителя.

Расчет токов уставок производится по следующим формулам:

где — ток электромагнитного расцепителя.;

— пусковой ток установки;

— коэффициент разброса;

— коэффициент надежности;

— номинальный ток автоматического выключателя;

— расчетный коэффициент электромагнитного расцепителя;

Кд. – действительный коэффициент (справочная величина).

2) Расчет токов уставки теплового расцепителя.

где — ток теплового расцепителя;

— коэффициент разброса;

— коэффициент надежности для не перегруженных сетей;

— номинальный ток автоматического выключателя.

— расчетный коэффициент теплового расцепителя;

Кд. – действительный коэффициент (справочная величина).

При отсутствии справочных данных по значениям коэффициентов для расчёта уставок расцепителей можно использовать следующие соотношения:

ток уставки теплового расцепителя принимается равным на 15 – 20 % больше рабочего тока:

Iт.р = (1,15 – 1,2) I р ,

где Iр – рабочий ток электроустановки, А.

ток уставки электромагнитного расцепителя определяется кратным току срабатывания теплового расцепителя:

где K =4,5 – 10 – коэффициент кратности тока срабатывания электромагнитного расцепителя.

В табл. 8.10 пиведены характеристики воздушных выключателей серии А 3000.

Примервыбора автоматического выключателя для двигателя нажимного устройства стана.

где — номинальное напряжение автоматического выключателя;

— номинальное напряжение защищаемой установки.

где — номинальный ток автоматического выключателя;

— номинальный ток защищаемой установки.

Расчет уставки электромагнитного расцепителя:

Выбираем действительную кратность Кд. = 12, по условию

где, — ток электромагнитного расцепителя;

— коэффициент разброса;

— коэффициент надежности;

— номинальный ток автоматического выключателя;

— расчетный коэффициент электромагнитного расцепителя;

выбор автоматического выключателя по току К.З?

ток Короткого замыкания =122А. какой максимальный я могу выбрать автомат? где то слышал ток К.З. делется на 3, получается для данного случая я могу поставить максимално 40А автомат.?
Исходные данные:
— Марка и сечение проектируемого кабеля выбрано в соответствии с требованиями заказчика и принятым проектным решением: СИП 4х16;
— Длина трассы электроснабжения от точки подключения до ЩУ БС L=275м;
Минимальный ток короткого замыканя определяется исходя из того условия, что замыкание происходит в самом удаленном участке защищаемой цепи. Это замыкание может произойти между фазным и нулевым рабочим проводниками.
Для упрощения расчета минимального тока короткого замыкания используется следущие данные: сопротивление проводника в результате нагрева увеличивается на 50% от номинального, напряжение источника снижается до 80%.
Расчетные формулы:
I=0.8*U/(1.5*ρ*2*L/S)
где U — номинальное напряжение между фазой и нетралью;
ρ — удельное электрическое сопротивление алюминия =0,028 Ом*мм²/м;
L — длина проводника 2*275=550м;
S — сечение проводника =16мм².
Данные расчета:
I=0.8*220/(1.5*0.028*2*275/16)=122.2А

#2 Ответ от Bogan07 28 ноября 2008г. 12:33:48

  • На форуме с 12 декабря 2007г.
  • Сообщений: 59
  • Спасибо: 1
Re: выбор автоматического выключателя по току К.З?

> Максим
если я не ошибаюсь, то надо выбрать автомат, который сработает при таком токе кз. это определяется характеристикой автомата(BCD). обычно берут характеристику C. в этом случае Iкз должно быть больше чем 10*In, то есть максимальный автомат по номиальному току 10А. Если характеристика автомата B, то значение номинального тока в пять раз должно быть меньше, то есть в данном случае автомат на 20А.
Вот вкратце все. для определения требуемой характеристики автомата можно воспользоваться каталогом автоматов того же АВВ.

Читайте так же:
Автоматический выключатель 3 полюсный 100а abb

#3 Ответ от Bogan07 28 ноября 2008г. 12:54:49

  • На форуме с 12 декабря 2007г.
  • Сообщений: 59
  • Спасибо: 1
Re: выбор автоматического выключателя по току К.З?

> Максим
поправлюсь:
". при замыкании на корпус или нулевой рабочий проводник ток однофазного короткого замыкания должен составлять не менее: . значения 1,1*In*N, для автоматических выключателей с мгновенным расцеплением, где N равно 5,10,20 при характеристиках B,C,D соответственно."
для остальных известных мне случаев при замыкании на корпус или нулевой рабочий проводник ток однофазного короткого замыкания должен составлять не менее трехкратного значения In.

#4 Ответ от Олег 17 января 2009г. 13:26:17

  • На форуме с 23 января 2007г.
  • Сообщений: 24
  • Спасибо: 0
Re: выбор автоматического выключателя по току К.З?

Характеристики В; С; D — в основном для автоматов с небольшими токами (до 100А). У мощных автоматов для каждого типа указывается свой ток срабатывания по К.З. Ваш расчетный ток К.З. должен быть больше тока К.З. автомата.
Но вообще то номинал автомата выбирается по нагрузе, которую он должен держать, а уж если ток К.З. не соответствует характеристикам автомата, то нужно менять другие параметры(например сечение жил кабеля), чтобы увеличить ток К.З. линии.

#5 Ответ от Дмитрий Щуров 23 января 2009г. 09:40:10

  • На форуме с 23 января 2009г.
  • Сообщений: 3
  • Спасибо: 0
Re: выбор автоматического выключателя по току К.З?

Здравствуйте коллеги!
Хотел бы посоветоваться. У меня встал вопрос на соответствие старой терминологии новой.
Термины согласно ГОСТ Р 50030.2-99:
Icu — номинальная предельная наибольшая отключающая способность, кА
Ics — номинальная рабочая наибольшая отключающая способность, кА
Icm — номинальная наибольшая включающая способность, кА
Насколько я понял они соответствуют традиционным:
ОПКС — одноразовая предельная коммутационная способность, кА
ПКС — предельная коммутационная способность, кА
Электродинамическая стойкость, кА
Таким образом при проверке автоматического выключателя по условиям КЗ нужно выполнение следующих условий:
Ics > Iкз max (действующее значение периодической составляющей максимального тока КЗ)
Icm > Iкз уд (амплитудное значение ударного тока КЗ)
Уважаемые коллеги, хотелось бы услышать ваши комментарии на эту тему.

#6 Ответ от фарэнгейт 26 января 2009г. 03:01:43

  • На форуме с 9 июня 2008г.
  • Сообщений: 47
  • Спасибо: 0
Re: выбор автоматического выключателя по току К.З?

2Максим
расчетный ток разве не нужен для выбора автомата?
Я не проектант, но знаю, что есть характеристики срабатывания B, С, D, K, Z. Которые обеспечивают максимальную отсечку.

#7 Ответ от Дмитрий Щуров 26 января 2009г. 10:11:24

  • На форуме с 23 января 2009г.
  • Сообщений: 3
  • Спасибо: 0
Re: выбор автоматического выключателя по току К.З?

Если говорить про полную процедуру выбора автоматического выключателя, то нужно выполнить следующий перечень условий:
1. Ir > Iр, где
Ir — ток уставки теплового расцепителя, А
— расчетный ток линии, А
2. Im*K1 > Iкз min,
Im*K2 < Iпуск, где
Im — ток срабатывания электромагнитного расцепителя, А
(задается либо непосредственно в Амперах, либо в кратности к Ir,
либо типом характеристики (В, С, D), которая подразумевает
соответствующую кратность к Ir)
K1 — коэффициент гарантированного срабатывания, о.е.
К2 — коэффициент гарантированного несрабатывания, о.е.
Iкз min — минимальный ток короткого замыкания, А
Iпуск — пусковой ток нагрузки, А
3. Ics > Iкз max,
Icm > Iкз уд, где
Ics — номинальная рабочая наибольшая отключающая способность, кА
Icm — номинальная наибольшая включающая способность, кА
Iкз max — действующее значение периодической составляющей максимального тока короткого замыкания, кА
Iкз уд — амплитудное значение ударного тока, кА

Кратность автоматических выключателей

Автоматический защитный выключатель (АВ) относится к наиболее часто используемым аппаратам коммутации и защиты в сетях 0,4 кВ. Защитные функции автоматов построены на срабатывании расцепителей двух видов:

  • электромагнитного;
  • теплового.

Срабатывание электромагнитного расцепителя происходит без выдержки времени и обеспечивает защиту от сверхтоков короткого замыкания.

Тепловой расцепитель имеет интегральную зависимость времени срабатывания от токовой нагрузки. Это обусловлено применением биметаллического элемента, нагреваемого проходящей токовой нагрузкой.

Чем больше значение токовой величины, тем быстрее происходит тепловой изгиб биметалла, освобождение защёлки и, соответственно, отключение автомата. Тепловой расцепитель защищает объект от перегрузки.

Основные принципы автоматической защиты электрических цепей и электрооборудования заключаются в следующем.

Элементы автоматической защиты АВ не обладают возможностью гибкой настройки параметров срабатывания, как УРЗА. Поэтому для обеспечения защиты нагрузки различного свойства применяют автоматические выключатели, имеющие разную зависимость времени срабатывания от токовой величины. Эта зависимость называется время – токовой характеристикой (ВТХ) автоматического выключателя.

Читайте так же:
Выключатель трехполюсный с устройством защитного отключения

В соответствии с ГОСТ Р 50345 – 2010 время – токовые характеристики автоматов делятся на три типа – B, C, D. Наиболее наглядно сравнительные характеристики автоматов защиты демонстрируют графики ВТХ. По горизонтальной оси графиков отложены значения кратности тока, то есть, отношение фактического тока к номиналу автомата, по вертикальной – время отключения.

ГОСТ регламентирует порядок проведения испытаний по проверке время – токовых характеристик защитного автомата. Проверка отключающей характеристики осуществляется на пяти значениях испытательного тока.

Первые три применяемые в ходе испытаний токовые значения предназначены для проверки срабатывания тепловых расцепителей. Одно из них является величиной нерасцепления, два других – токами расцепления. Два последних испытания проводятся для проверки отключающей способности мгновенного электромагнитного расцепителя.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Время-токовая характеристика типа C

График время-токовой характеристики вида С:

1.Если через предохранительный коммутатор будет протекать ток в 5 In, то максимальное время отключения в горячем состоянии составит 0,02 секунды. В холодном состоянии наибольшее время разъединение :

  • для выключателей менее 32 А – 11 сек.;
  • для выключателей более 32 А – 25 сек.

2.Если через защитное коммутационное устройство будет протекать электроток в 10 In, то максимальное время срабатывания в горячем состоянии – 0,01 секунды, а в холодном – 0,03 секунды.

Данный тип автоматов используется в основном для защиты моторов с небольшими пусковыми токами и трансформаторов. Их также можно применять для запитывания цепей освещения. Они широко используются в жилом фонде.

Автоматические выключатели характеристика С

Все автоматы характеристики С имеют большее значение кратности тока к номиналу – I/In, относительно автоматов с характеристикой В, кратность от 5 до 10In. Смотрим на графике №3, при токе 5In автомат отключается в течении 0,02 секунды в разогретом виде, и за 11 сек. для холодного автомата ниже 32 ампер, и через 27 сек. отключение произойдет для автомата выше 32 А.

Читайте так же:
Кнопки выключатели для масляных радиаторов

График №3 Время токовые характеристики для группы автоматов С

Проходящий ток в 10In вызовет отключение через 0,01 сек. для горячей линии и 0,027 сек. для холодной. С такой характеристикой автоматы устанавливают в защите двигателя с не большими пусковыми токами, для освещения, в офисах, домах, квартирах, подсобных помещениях.

Класс токоограничения

Когда появляются сверхтоки, изоляция резко нагревается. При максимальном значении тока автомат разъединяет цепь. За это время изоляция может повредиться, поэтому вводится еще одна характеристика, контролирующая ток.

Класс токоограничения влияет на безопасность всей схемы. Физически это промежуток времени, при котором происходит размыкание контактов и гашение дуги в гасительной камере. Выделяют 3 класса:

  • 3 класс – самый быстрый, время гашения составляет 2,5 мс;
  • 2 класс – время гашения 6-10 мс;
  • 1 класс – время гашения превышает 10 мс.

На устройстве это значение указывается в черном квадрате. 1 класс не обозначается на устройстве.

Назначение и разновидности автоматов

Автоматический выключатель – предохранительное устройство, которое перекрывает поступление тока в проводку при перегрузке в сети и/или коротком замыкании. Это происходит с помощью расцепителя. Он бывает трех видов, от которых зависит прямое назначение выключателя.

Тепловой служит для защиты от перегрузок в сети, представляет собой биметаллическую пластину теплового реле. При превышении значения номинального тока она нагревается, расширяется и выгибается, толкая рычаг, который разрывает соединение.

Второй тип – электромагнитный. Это система из катушки, сердечника и пружины, предназначенная для защиты от короткого замыкания. При резком увеличении силы тока, проходящего через катушку, меняется магнитное поле, это в свою очередь меняет положение сердечника, приводя к сжатию пружины и срабатыванию рычага.

Есть и универсальный вариант — комбинированный. Он объединяет в себе оба вышеописанных механизма, защищая одновременно и от перегрузок, и от скачков напряжения.

По конструкции автоматические выключатели разделяются на несколько разновидностей в зависимости от силы тока, на которую они рассчитаны:

  • воздушный – от 800 до 6300 А;
  • в литом корпусе – от 10 до 2500 А;
  • модульный – от 0,5 до 125 А.

Последний является одним из самых распространенных. При его выборе следует отметить, что он доступен по цене и прост в использовании и монтаже. Применяется в квартирах, частных домах и офисах. Устройства в литом корпусе и воздушные чаще устанавливаются на промышленных предприятиях и имеют более высокую цену.

Есть разделение автоматических выключателей и по времени срабатывания. Это характеристика, которая определяет скорость расцепления. В зависимости от её значения выделяют опять же три типа. Первый – нормальные (0,02-0,1 с), далее идут селективные (до 1 с) и быстродействующие с токоограничивающим эффектом (до 0,05 с). Последние являются особо долговечными и эффективными. Такой автомат срабатывает перед самой перегрузкой, до сильного повышения тока. Для выбора по данному параметру необходимо учесть силу перегрузок, которые могут возникнуть, и их частоту. Чем они выше и чем чаще происходят, тем быстрее устройство должно на них реагировать.

Как работают автоматические выключатели

Работа автоматического выключателя в различных режимах происходит по простому принципу.

Нормальный режим

Во время взвода рычага управления выключателем приводится в движение механизм взвода и расцепления, тем самым осуществляя коммутацию силовых контактов.
После коммутации ток протекает от питающего провода или кабеля, подключенного к винтовому зажиму. Через этот зажим по контактам проходит ток, причем сначала по неподвижным, а затем и по подвижным.

Короткое замыкание

В данном режиме электромагнитный расцепитель автоматического выключателя должен произвести мгновенное отключение нагрузки. Принцип действия заключается в следующем: при значительном превышении номинального показателя, протекающего через обмотку электромагнита, возникает мощное магнитное поле, которое тянет вниз якорь с подвижным контактом.

Последствия КЗ

Якорь в свою очередь надавливает на рычажок спускового механизма, в результате чего происходит отключение нагрузки.

Перегрузка

За защиту от перегрузки отвечает тепловой расцепитель. Принцип работы данного расцепителя заключается в следующем: когда энергия, протекающая через биметаллическую пластину, становится равной или больше установленного значения, пластина нагревается и постепенно изгибается.

Обратите внимание! Достигнув определенного угла изгиба, она надавливает своим кончиком на рычажок спускового механизма. Таким образом автомат отключается.

Небольшой лайфхак о том, как выбрать необходимый выключатель для дома

Предложим несколько общих рекомендаций:

  • Исходя из всего выше сказанного, нам следует остановить свой выбор на АВ с времятоковой характеристикой «С».
  • При выборе штатных параметров необходимо учитывать планируемую нагрузку. Для вычисления следует воспользоваться законом Ома: I=Р/U, где Р – мощность цепи, U – напряжение. Рассчитав силу тока (I), выбираем номинал АВ по таблице, представленной на рисунке 10. Рисунок 10. График для выбора АВ в зависимости от тока нагрузки

Расскажем, как пользоваться графиком. Допустим, произведя расчет силы тока нагрузки, мы получили результат — 42 А. Следует выбрать автомат, где это значение будет в зеленой зоне (рабочей области), это будет номинал – 50 А. При выборе также следует учитывать, на какую силу тока рассчитана проводка. Допускается подбирать автомат исходя из этого значения, при условии, что суммарная сила тока нагрузки будет меньше расчетного тока для проводки.

Чем нагрузить автоматический выключатель

Электромонтажные работы на любом объекте должны заканчиваться приёмо-сдаточными испытаниями и измерениями, которые выполняются по методикам, указанным в нормативно-технической документации (ПТЭЭП и ПУЭ). Одним из их видов является прогрузка автоматов, позволяющая проконтролировать соответствие параметров выключателей номинальным данным. Контроль состояния защитной автоматики, электромонтаж которой выполняется согласно проекту, позволяет предотвратить угрозу коротких замыканий (КЗ).

Общие сведения

При прогрузке, в первую очередь, выполняется проверка таких физических величин:

  • номинальных значений силы тока, допустимых для нормальных рабочих режимов;
  • токов срабатывания защитной автоматики – максимального значения, на которое реагирует автоматический выключатель при аварийной ситуации (при КЗ или перегрузке);
  • периодов срабатывания системы – времени, которое требуется автоматам для отключения цепи.

Определение этих параметров и сравнение с нормативными значениями и является основной задачей проверок выключателей электролабораторией. При несовпадении результатов с проектными данными требуется доработка сети (с заменой автоматов) и выполнение повторной прогрузки.

Схема оборудования для выполнения проверки

Процесс проверки с помощью первичного тока требует использования специальных прогрузочных устройств. Большое количество вариантов такого оборудования позволяет подобрать его для любых условий и учитывать цену испытаний.

Одна из стандартных схем для проверки состоит из таких элементов:

  • ключа управления;
  • трёх трансформаторов: ЛАТР, НТ и ТТ;
  • амперметра;
  • секундомера;
  • проводки, обеспечивающей соединение автоматов с выводами регулируемого тока.

Применение такого оборудования приводит к наведению во вторичной обмотке НТ тока силой до 50А.

По похожей схеме выполняется и прогрузка мощных автоматических выключателей. Хотя в такой ситуации требуется использование более производительного трансформаторного оборудования и источников питания.

Выполнение прогрузки

В качестве примера выполнения прогрузки можно рассмотреть проверку автоматического выключателя ВА47-29. Аппарат имеет номинальный ток 6А и защитную характеристику «C». Модель оборудована двумя видами защиты – мгновенной электромагнитной и тепловой, при которой до отключения выдерживается определённое время.

Проверке подлежат оба, а перед её началом следует найти график зависимости времени срабатывания от силы тока.

Работа с графиком и особенности процесса

С помощью составленного для каждого автомата графика можно определить любой параметр его срабатывания:

  • С помощью оси X можно увидеть кратность (соотношение токов прогрузки к стандартным значениям).
  • Ось Y показывает, сколько времени понадобится на срабатывание аппарата.
  • Для определения зоны, в которой сработает электромагнитная защита, следует найти диапазон кратности от 5 до 10. В примере это означает срабатывание автомата при силе тока от 30 до 60 А в течение 0,01–0,02 с.
  • Электромагнитная защита проверяется током с кратностью 8 (48 ампер), а автоматический выключатель должен сработать за 0,01 с – на графике это жёлтая линия.
  • Тепловая защита срабатывает в зоне, ограниченной двумя кривыми, которые показывают горячее и холодное состояние автомата. Проверяется она током с кратностью 3 (18А), а автомат отключается в течение 3–80 с – графически это показано красной линией.

Упростить подключение можно с помощью устанавливаемых на выключатель удлинённых выводов из шпилек. К ним подключают соединительную проводку и выполняют прогрузку.

При отсутствии срабатывания хотя бы одного типа защиты в соответствии с указанным временем автомат считается неисправным, а его дальнейшая работа запрещена

Оформление результатов проверки

После завершения проверки автомата с помощью первичного тока составляется протокол с указанием всех результатов и условий:

  • типов расщепителей;
  • заданных выдержек;
  • силы тока перегрузки и КЗ;
  • периодов срабатывания автоматов;
  • длительности приложения испытательных токов;
  • силы тока срабатывания и несрабатывания;
  • реакции расщепителей при каждом испытании.

Соответствие результатов нормативным значениям является основанием для ввода объекта в работу. Однако, кроме первоначальной проверки, ответственному за электрохозйство объекта придётся обеспечивать прогрузку выключателей и в процессе работы. Наша электролаборатория может предложить вам высокое качество проведения исследований и хорошую цены на наши услуги. Скидки на комплексные заказы.

Периодичность прогрузки

Периоды между прогрузками выключателей не регламентируются нормативными документами. Сроки определяются заводами-изготовителями автоматов. На предприятиях их устанавливают технические руководители. Прогрузка может выполняться раз в 6 лет. Однако рекомендованная периодичность проверок, позволяющая избежать проблем и на промышленном предприятии, и в быту, составляет 1 раз в 3 года.

Приборы для прогрузки автоматов

Параметры, характеризующие автомат — это:

  • период срабатывания при разных токах перегрузки либо токах короткого замыкания;
  • сработка при токах короткого замыкания.

Эти характеристики можно снять при наличии подручных средств.

Для проведения испытаний существует стенд, состоящий из:

  • источника для преобразования переменных токов;
  • аппаратуры для проведения замеров и контроля за параметрами;
  • соединительных элементов: колодок и кабелей;
  • диэлектрической столешницы или оборудования рабочего места;
  • для защиты работника диэлектрического коврика.

Оборудование рабочего места

К сведению! Устройства для прогрузки автоматических выключателей делают переносными для удобства проведения испытаний.

  1. Снимаем жало с паяльника и припаиваем на его место два медных провода.
  2. Фиксируем кнопку паяльника нажатой.
  3. Подключаем розетку к ЛАТРу.
  4. Собираем схему с автоматом и токовыми клещами.
  5. Плавно поднимаем напряжение ЛАТРом на паяльнике тем самым увеличивая ток через автоматический выключатель.

При замыкании выхода паяльника, замеры показали ток более 100 Ампер. К сожалению, это предел шкалы измерения для данных токовых клещей. Также максимальный ток сильно зависит от состояния контактов автомата, а точнее, от переходного сопротивления.

Необходимость эксплуатационной проверки и прогрузки автоматов

Требуется ли проведение проверку автоматических выключателей в ходе эксплуатационных испытаний, может решать технический руководитель объекта. В нормативной документации не указано точно, с какой периодичность должны проводиться проверки, поэтому их частота полностью в компетенции лица, ответственного за техническую безопасность объекта.

Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Автомат защиты не включается

Если при переводе тумблера в верхнее положение автомат не включается, а тумблер отбрасывает вниз – причина может быть в механической изношенности элементов выключателя, или короткое замыкание.

Проверяется диагностикой питающей фазы на «ноль» низкоомным контрольным прибором.

Проверка с помощью светодиодного контрольного прибора может «обмануть» и линия прозвонится сквозь нагрузку (электрические двигатели, нагревательные приборы).

Если прибор показывает замыкание цепи – пробит изоляционный слой кабелей.

Кратко про селективность

По правилам: защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии.

Грубо говоря, нельзя ставить автоматический выключатель меньшим номиналом выше автомата с большим номиналом теплового расцепителя. То есть должна соблюдаться иерархическая цепочка. Чтобы при срабатывании автомата, отключалась только один участок цепи, на котором произошло КЗ.

На фото выше соответственно 32 и 25; 32 и 16. Селективность соблюдена. Но такой вариант щита не является хорошим примером сборки, это всего лишь для понимания сути. У заказчика было всего 2 контура (силовой и свет), и менять проводку он не хотел.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector