Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Онлайн помощник домашнего мастера

Автоматы в щитке: советы по подключению, особенности сборки щитка для квартиры или частного дома (инструкция + рекомендации)

Пробки с каждым годом все дальше уходят в прошлое, уступая место более безопасным и долговечным автоматическим выключателям. Так называемые автоматы или пакетники в щитке отвечают за бесперебойную подачу тока в сеть, а в случае каких-либо неполадок с электричеством – своевременно отключаются, тем самым защищая цепь от повреждений, замыкания и возгорания.

Полноценное функционирование устройств целиком зависит от качества приборов и правильного монтажа, поэтому важно знать, как правильно собрать щиток с автоматами, чтобы обезопасить свое здоровье и имущество.

Краткое содержимое статьи:

Принцип работы автомата

Фото автоматов в щитке дает понять внешний вид устройства: белая непрозрачная пластмассовая коробка вытянутой формы с цветным рычагом управления и отверстиями для присоединения к линии. На корпус нанесена соответствующая маркировка о классе, мощности и других параметрах.

  • Корпус из негорючей пластмассы;
  • Система управления, представляющая собой рычаг или кнопки включения и отключения;
  • Клеммы сверху и снизу для подключения устройства в цепь;
  • Крепление на DIN рейку;
  • Коммутационное устройство;
  • Дугогасительная камера, охлаждающая и угасающая появляющуюся при неполадках сети электрическую дугу;
  • Индикатор положения;
  • Расцепитель, в зависимости от вида инициирующий отключение подачи тока превышением допустимого температурного режима (тепловой), нагрузочного тока (магнитный) или предполагающий возможность установки временной задержки в случае замыкания цепи.

  • Точность срабатывания;
  • Индикатор, отображающий включенное или отключенное состояние;
  • Возможность быстрого отключения опусканием рычажка;
  • Многократное использование.

Как выбрать автомат?

  • Тип, определяющий назначение (“А” – размыкание цепей большой протяженности; “В” – осветительные линии общего функционала; “С” – электрические устройства с умеренными токами; “D” – для активной нагрузки, превышающей стандартные значения; “K” – индуктивные объемы; “Z” – электроника);
  • Количество полюсов (для однофазной сети – один или два, для трехфазной – три или четыре);
  • Номинальное напряжение, соответствующее данному показателю сети;
  • Максимальный рабочий ток линии, рассчитываемый из мощности всех подключенных к ветке приборов и техники;
  • Отключающая способность при превышении допустимых значений.

Если требуется заменить старый автомат, то ориентироваться необходимо на предыдущее устройство (в случае, если его работа полностью устраивала). Когда заменяемый пакетник был далек от совершенства, то можно отталкиваться от не устроивших параметров.

Монтаж автомата в щитке

Установка автоматического выключателя и его последующее подключение требуют определенных знаний и опыта в электротехнике, поэтому подключать устройство без практики не рекомендуется. Но при желании и строгом следовании инструкции подключить автомат будет под силу и профессионалу, и новичку.

Перед тем, как приступить к монтажу своими руками рекомендуется просмотреть подходящие схемы подключения автомата, где будет наглядно показаны все проводимые соединения.

  • Ознакомиться с инструкцией, прилагаемой к автомату, схемой подключения, изображенной на корпусе устройства.
  • Изучить нормативные документы (ГОСТ, ПЭУ), касающиеся данного вопроса.
  • Подготовить инструменты: острый нож, отвертки (в том числе индикаторную), мультиметр.
  • Определить назначение проводов (если отсутствует цветовая или буквенная маркировка).
  • Обесточить сеть.
  • Зачистить провода на 1 см.
  • Подготовить щиток под размещение автоматов: установить DIN рейку, определить место.

  • Соединить питающий провод с верхней (входной) клеммой пакетника, а проводник, идущий от счетчика, надежно закрепить к нижней (выходной).
  • Развести по УЗО, нулевой шине, заземлению и другим имеющимся защитным системам.
  • Нулевой кабель подключить к клемме PEN через счетчик.
  • При необходимости задействовать специальные наконечники (для слишком гибких проводов или для большего закрепления).
  • Проверить надежность закрепления жил, подергав за каждый присоединенный проводник.
  • Включить ток, проверить функционирование устройства.

Для двухполюсного и трехполюсного механизма подключение происходит аналогично за исключением того, что подсоединяется и заземляющий провод. В итоге общее питание фиксируется на первой клемме справа, нулевой проводник на соседней, а через нижние идет закрепление фазы и нуля.

Автомат в щитке – это быстрый и удобный способ контролировать поступление электричества в дом, помимо этого прибор имеет организационную и защитную функцию.

Для безопасного его функционирования важно грамотно подойти к выбору, расчетам и подключению, а вся необходимая для этого информация есть как на корпусе устройства, в сопроводительных документах, так и в приведенных выше инструкциях.

Формы секционирования НКУ

При изучении или проработке электрической части проекта строительства того или иного объекта нередко приходится сталкиваться с такой терминологией, как, например, «секционирование по форме 2b», «секционирование корпуса не менее 3b» и т.п.

И если инженерный состав производителей электрораспределительного оборудования, как правило, понимает, о чем идет речь, для некоторых же сотрудников электромонтажных предприятий или сотрудников службы Главного энергетика промышленных предприятий, а также для некоторых проектантов стоит внести разъяснения по этому поводу (особенно для начинающих специалистов).

В данной статье мы постараемся разобраться, что же такое формы секционирования в распределительных устройствах 0,4 кВ; для чего это нужно; преимущества той или иной формы секционирования и их недостатки; как выбирать и на что ориентироваться при выборе формы секционирования.

Читайте так же:
Испытание изоляции масляных выключателей

Секционирование электрического шкафа – это разделение всего внутреннего пространства корпуса щита на секции при помощи внутренних разделяющих и изолирующих перегородок или кожухов приборов. Осуществляется секционирование для следующих целей:

  • обеспечение защиты персонала от прикосновений к токоведущим элементам электроустановки
  • защита от попадания твердых элементов одного отсека в другой
  • понижение рисков возникновения и распространения электрической дуги внутри щита
  • оперативная замена вышедшего из строя функционального блока, не отключая при этом всю электроустановку

Секционирование определяется и регулируется Гостами ГОСТ Р 51321.1-2007 (МЭК 60439-1:2004) и ГОСТ Р МЭК 61439.2-2012. Подразделяется данное понятие на 7 общепринятых форм. Перед описанием форм секционирования, стоит разъяснить терминологию. Итак, есть три ключевых термина в описании форм секционирования. Для более понятного описания, возьмем ГРЩ-0,4кВ (Главный распределительный щит низкого напряжения до 380В):

  • функциональный блок – в рамках ГРЩ-0,4кВ это автомат (вводной, секционный или отходящий), в рамках других щитов это может быть любой аппарат или связка аппаратов, выполняющих единую конкретную функцию оперирования нагрузкой.
  • магистральная (сборная) шина – токоведущая общая шина (медная или алюминиевая). Элемент электрического щита, является связующим звеном между вводными и отходящими функциональными блоками (в ГРЩ шина между Вводными и отходящими автоматами).
  • зажимы для внешних проводников – места соединений отходящих кабелей с функциональными блоками (в ГРЩ – кабель, подключаемый к отходящему автомату).

Форма 1. Без внутреннего разделения на блоки.

простейшая форма секционирования

Это самая простейшая форма секционирования, реализованная в подавляющем большинстве щитов низкого напряжения. Открываешь дверь, видишь автоматы и прочую аппаратуру. Все токопроводящие элементы либо изолированы, либо закрыты специальными прозрачными диэлектрическими или металлическими пластронами, исключающими случайное прикосновение.

Форма 2. Функциональные блоки отделены от сборных шин.

Это дает возможность доступа к магистральной (сборной) шине, не получая при этом доступ к функциональным блокам.

Форма 2a. Зажимы для внешних проводников не отделены от сборных шин.

Зажимы для внешних проводников не отделены от сборных шин

Выключатели автоматические (вводные и отходящие) закрыты горизонтальными и вертикальными перегородками, сборная шина и подключение кабелей находятся в едином пространстве.

Форма 2b. Зажимы для внешних проводников отделены от сборных шин.

Зажимы для внешних проводников отделены от сборных шин

Сборная шина отделена перегородками от автоматов и мест присоединения отходящих кабелей.

Форма 3. Отделение сборных шин от функциональных блоков, с разделением также всех функциональных блоков.

В 3-ей форме, функциональные блоки (в ГРЩ выключатели автоматические) в отличие от формы 2 отделены друг от друга.

Форма 3a. Зажимы для внешних проводников не отделены от сборных шин.

Зажимы для внешних проводников не отделены от сборных шин

В ГРЩ вводной автомат закрыт перегородками, каждый отходящий автомат закрыт перегородками. Сборная шина и места соединений отходящих кабелей находятся в едином пространстве.

Форма 3b. Зажимы для внешних проводников отделены от сборных шин.

Зажимы для внешних проводников отделены от сборных шин

В дополнение к форме 3а перекрываются перегородками и изолируются от шины и функциональных блоков также места подключения кабелей.

Форма 4. Отделение сборных шин от всех функциональных блоков, с разделением также всех функциональных блоков.

Отделение зажимов для внешних проводников, связанных с одним функциональным блоком, от зажимов другого функционального блока и сборных шин.

Форма 4a. Зажимы для внешних проводников находятся в одной секции с функциональным блоком.

Зажимы для внешних проводников находятся в одной секции с функциональным блоком.

Форма 4b. Зажимы для внешних проводников находятся в разных секциях с функциональным блоком, но в отдельной отделенной защищенной секции.

Форма секционирования ГРЩ

Форма 4 (4a и 4b) является самой продвинутой формой, обеспечивающей максимальную изоляцию функциональных блоков, сборной шины и мест подключения кабелей каждого от всех остальных.

Главный распределительный щит

Стоит так же понимать, что изоляция функционального блока в любой форме секционирования предполагает управление им либо при закрытой двери щита, либо после её открытия. Принцип управления определяется требованиями проекта, главное условие — функциональный блок должен быть управляем без демонтажа изоляционных перегородок. Так же стоит знать, что формы секционирования 3 и 4 предполагают быстрое оперативное извлечение функционального блока, при этом не отключая весь электрический щит. Говоря обывательским языком, в таких формах секционирования оператор ГРЩ может выдернуть или выкатить любой отходящий автомат, не откручивая при этом отходящие от него кабеля, и самое главное, не выключая вводной автомат. Оператор ГРЩ может вообще не открывать клеммный отсек. Удобно? Да, безусловно, это удобно и быстро. А главное, это безопасно!

В чем заключаются преимущества секционирования?

1. Сборные шины устройства отделены от функциональных блоков.

2. Обеспечение видимого разрыва цепи путем выкатывания/отключения функционального блока.

3. Защита от проникновения внутрь щита (блокировки, замки, перегородки).

4. Возможность расширения функционала НКУ путем добавления новых блоков. Модульность.

5. Высокий уровень общей надежности электрического щита.

6. Минимальный риск возникновения электрической дуги за счет изолирования отсеков.

Читайте так же:
Автоматический выключатель двухполюсный 10а legrand

Какую форму секционирования выбирать? Современный уровень развития технологий предъявляет повышенные требования к безопасности персонала, надежности электроснабжения и возможностям модернизации существующих НКУ. В ряде отраслей промышленности (добыча и переработка нефти, угля, газа; электростанции; цементные, сталелитейные заводы; водоочистные станции и др.) вопросы безопасного и качественного электроснабжения имеют особое значение. При проектировании распределительных щитов НКУ 0,4кВ (РУ, РУНН, ГРЩ) для подобных предприятий предпочтительно применение специальных форм внутреннего секционирования от 2а вплоть до 4b.

Главный распределительный щит

Но, при конечном выборе формы секционирования электрического щита встает вопрос цены. Любое увеличение формы секционирования шкафа влечет за собой увеличение стоимости электрического шкафа. Дополнительная безопасность персонала, модульность электрического шкафа, возможность оперативно извлекать/заменять функциональные блоки, не останавливая при этом производственный процесс, все это требует использования специальных перегородок, дополнительных устройств защиты, блокировок, аксессуаров.

Так, например, функциональный блок шкафа (на примере ГРЩ), реализованного по форме 4b, включает в себя: перегородки (передние, задние, боковые и горизонтальные), блокировки для случайного извлечения/выпадения функционального блока, индикации состояния функционального блока (включен, выключен, в аварии, извлечен), автомат с обязательными аксессуарами (втычная/выкатная корзина, дополнительные контакты, ручка оперирования через панель/дверь или электропривод для возможности управления кнопками, в том числе дистанционно), специальные клеммы для возможности извлечения функционального блока без отключения всего электрического щита и так далее. В то же время, функциональный блок шкафа, реализованного по форме 1 включает в себя шину, закрытую передним защитным экраном, автомат и клеммы подключения отходящих кабелей.

Решение, какую форму секционирования выбирать, остается за заказчиком. Мы же, в свою очередь, готовы помочь реализовать проект любой сложности, изготовить шкаф с любой известной формой секционирования. Обширный опыт конструирования и изготовления позволяет нам с уверенностью утверждать, что наши НКУ с формой секционирования 4b и ниже удовлетворяют всем требованиям ГОСТ и ПУЭ, обеспечивают полноценную защиту персонала. Более того, наличие полного цикла производства и собственного цеха металлообработки позволило нам разработать и внедрить собственный конструктив корпусов шкафов ГРЩ, что в свою очередь позволяет нам формировать наиболее конкурентные предложения по стоимости такого класса оборудования. Особенно по сравнению со сборщиками электрощитового оборудования, не имеющими собственной металлообработки и вынужденными покупать готовые корпуса (Rittal, DKC и др.)

Корпус ГРЩ с выдвижными блоками с формой секционирования до 4b (панели типа НКУ-TS) стал одной из ключевых разработок в нашем производстве корпусов для распределительных устройств 0,4 кВ.

НКУ-TS базированы на едином конструктиве Tesla-Medium и рассчитаны на номинальный ток до 6300А, с номинальным током блока до 630А. В щитах реализованы функции управления и распределения электроэнергии в одном конструктиве, т.е. схема выдвижного блока может быть различной: для распределения электроэнергии используются автоматические выключатели, для управления нагрузками — пускорегулирующая аппаратура (контакторы, устройства плавного пуска, частотные преобразователи). В блоках реализуется любая схема управления, необходимо лишь учитывать максимальные габариты блоков выдвижного исполнения. Продукт создан с учетом требований современных автоматизированных производств, где даже самая кратковременная остановка технологического процесса влечет за собой огромные убытки.

Конструктивные особенности корпусов НКУ-TS

Конструктивные особенности корпусов НКУ-TS

Статья написана при участии нашего ведущего технико-коммерческого инженера – Руслана Зиганшина.

Сколько автоматов ставить в электрощите: правила расчета

Проектируя электропроводку дома, выполняя ее замену или ремонт, основное внимание уделяют безопасности. От правильно произведенных работ зависит сохранность имущества и жизнь людей. Для обеспечения защиты электропроводки используют автоматический выключатель. В этой статье мы расскажем, как произвести расчет количества автоматов в щитке для квартиры и частного дома.

Общие сведения

  1. Обеспечивает защиту проводки от короткого замыкания. В результате чего токи в линии резко возрастают, происходит перегрев проводников с оплавлением, а если токи воздействуют длительное время, то и с возгоранием. Это приводит к пожару, утрате материальных ценностей и создается угроза жизни.
  2. Защищает линию от длительного воздействия токов выше номинальных (защита от перегрузки). Как следствие провода нагреваются выше допустимого значения, более +65 0 С. Изоляция начинает плавиться, происходит короткое замыкание с вытекающими последствиями.

Автомат способен обеспечить надежную защиту электропроводки, оборудования, имущества, способен сохранить здоровье и жизнь человека. Но он не может обеспечить защиту человека от поражения электрическим током. Для этого применяются УЗО.

Однако, чтобы автоматический выключатель надежно обеспечивал защиту линии, необходимо правильно выполнить расчет. Промышленностью выпускаются автоматы различного исполнения, однополюсные, двухполюсные, трехполюсные и четырех полюсные.

На рисунке представлены однополюсные, двухполюсные и трехполюсные АВ.

Однополюсные, двухполюсные и трехполюсные автоматы

Расчет номинала автоматов защиты

При расчете руководствуются установленной нагрузкой. Из этих соображений производится подбор сечения проводов и устройства, который будет защищать линию.

Например, выполним вычисления линии для 3 розеток. Предполагается подключить электрические приборы, стиральная машина мощностью 2 кВт, СВЧ 1,5 кВт и электрочайник 0,8 кВт. Суммарная мощность равна 4,3 кВт(4300 Вт).

Читайте так же:
Автоматический выключатель двухполюсный abb 40 что это

По формуле вычисляем ток:

(Эта формула справедлива для активной нагрузки и применяется при проектировании электроснабжения в квартире.)

По справочным таблицам выбираем подходящее сечение провода. При этом учитывается способ прокладки и материал проводника. Выбираем проводку с медными проводами.

Из нижеприведенной таблицы выбираем ближайшее значение. Берем большее сечение медного проводника 2,5 мм 2 . Мы возьмем значения для «проложенных в трубе», потому что предполагается скрытая электропроводка.

Таблица выбора сечения кабеля

Следующим этапом подбираем автомат, который будет устанавливаться в электрощитке. По справочной таблице выполняем подбор необходимого автоматического выключателя.

На практике для розеток используют кабель сечением в 2.5 мм². Хотя в таблице указано, что при открытой прокладке нам подойдет и 1.5 мм². Это больше того, что рассчитали мы выше, и обусловлено тем, тем, что кабель прокладывают в стене, а не на открытом воздухе, а также особенностями работы автоматических выключателей — они способы длительно пропускать токи на 13% выше номинального. То есть АВ на 16А будет длительно проводить ток до 18А, на 25А – до 28А и т.д.

Ниже приведена часть таблицы, с рядом номиналов выпускаемых промышленностью автоматов:

Ряд номиналов автоматических выключателей

Выбираем автоматический выключатель на 16А. По расчетам следует установить прибор на 19,54 А. Но промышленность такие приборы не выпускает, поэтому выбираем значение ниже расчетного. К тому же розетки рассчитаны на ток в 16А, поэтому большего номинала автоматы нельзя ставить независимо от их числа.

Он будет надежно предохранять электропроводку от перегрузки и токов короткого замыкания в квартире или в загородном доме. Аналогичным образом производится расчет при замене старой электропроводки в доме.

В других случаях, когда подключение производится не через розетку, а напрямую, как электроплита, например, автоматический выключатель выбирают по мощности электроплиты. При этом кабель выбирают такой, чтобы через него мог длительно протекать ток номинальный ток с учетом потерь на линии. Важно отметить, что допустимый длительный ток кабеля рассчитанного сечения должен быть выше на 13% (и более) чем номинал автоматического выключателя на этой линии, по обозначенным выше причинам.

Расчет количества автоматов

Как рассчитать автомат на одну линию, было рассмотрено выше. Произведем расчет автоматических выключателей на 1 комнатную квартиру.

На ниже приведенном рисунке представлена типовая схема защиты электропроводки однокомнатной квартиры:

Схема электрощита

Из нее следует, что используется индивидуальная защита линий, которые питают конечных потребителей:

  • Установлены два АВ, которые защищают линии освещения в коридоре и комнате, а второе обеспечивает отключение освещения в туалете, ванной и на кухне при аварийной ситуации.
  • Розетки защищены не только АВ, но и дополнительной защитой на УЗО. Она предохраняет человека от случайного прикосновения к токоведущим частям электропроводки.
  • Аналогично построена защита розеток и стиральной машины.
  • Выделен отдельный автомат для отключения для электрической плиты.

Все приборы смонтированы в электрощите. Часто его монтируют в прихожей, а на площадке устанавливается электросчетчик и вводной АВ.

На 2 комнатную квартиру требуется большее количество автоматов. Что видно из схемы, которая приведена ниже.

В щите монтируются шесть автоматов, обеспечивающих отключения линий при коротком замыкании или перегрузках:

  • один АВ предохраняет линию освещения коридора и обеих комнат;
  • второй установлен на освещение кухни, туалета и ванной;
  • отдельно защищается линия, которая питает бойлер;
  • следующий автомат обеспечивает защиту розеток коридора, комнаты 1, комнаты 2, туалета и кухни.

Таким образом, если произойдет неисправность на одной из линий, ее легко можно будет локализовать и произвести ремонт.

Схема проводки в двухкомнатной квартире

Аналогичным образом производится расчет количества автоматов защиты на 3-х комнатную квартиру или на 4 комнаты. При этом следует подбирать электрощит, учитывая количество модулей в боксе.

Автоматы в квартирном электрощите

На рисунке вверху приведен монтаж автоматов защиты в электрощите современной квартиры.

Перед автоматами защиты монтируется вводной автомат. Он предохраняет электропроводку всего дома. Как правило, номинал вводного автомата указан в договоре на электроснабжение и менять на больший номинал без соответствующего разрешения нельзя (в любом случае он опломбирован). Вводной автоматический выключатель должен монтироваться до счетчика, т.е. защищать не только электропроводку всего дома или квартиры, но и прибор учета.

Пример показан на нижеприведенном рисунке:

Электрощит с электросчетчиком

Проектируя электропроводку на двухэтажный дом, предполагают установку щитков на каждом этаже. При этом по ПУЭ (глава 1.2. п. 1.2. 11) рекомендуется устанавливать резервные защитные АВ и закладывать возможность развития энергосистем.

Однако, количество резервных автоматов или автоматов в электрощите в целом никаким документом не регламентируется. Но при проектировании рекомендуется устанавливать дополнительные автоматы в количестве 10%.

Также, если в щите по норме установлено менее 10 автоматов, то монтируется дополнительно один резервный.

Заключение

Не сложно произвести расчет количества автоматов для дома или квартиры самостоятельно. Следует только придерживаться определенных правил:

  1. Зная ток нагрузки, сечение провода выбирается в большую сторону, а автоматы подбираются по меньшему току.
  2. Вводной АВ рассчитывается ограничивается выделенной на ваш объект мощностью.
  3. Количество автоматов рассчитывается по количеству линий электропроводки и потребителей.
Читайте так же:
Автоматический выключатель для духового шкафа

Расчет количества автоматических выключателей должен быть произведен тщательно. От этого зависит не только сохранность материальных ценностей, но и жизнь и здоровье человека. Поэтому расчет рекомендуется поручить квалифицированным специалистам.

УЗМ-3-63 — схема подключения устройства защиты

Перепады напряжения, сетевые помехи, изменение частоты переменного тока – эти факторы усложняют эксплуатацию электрических сетей и подключенных к ним потребителей, так как могут привести к выходу их из строя. Техника, запитанная от трехфазных линий, нуждается в защите. Для этой цели созданы устройства, контролирующие изменения в сети, и обеспечивающие отключение электроприборов, при выходе ее параметров за пределы допустимых. УЗМ-3-63 относится к таким защитным средствам и обладает техническими характеристиками, выгодно отличающими его среди аналогов. Читайте также статью ⇒ Устройство и принцип работы автоматов защиты в электрической цепи (УЗО).

Внешний вид защитного устройства для 3-фазных сетей УЗМ-3-63

Внешний вид защитного устройства для 3-фазных сетей УЗМ-3-63

Назначение и сферы применения изделия

УЗМ-3-63 обеспечивает контроль частоты трехфазной электросети, защищает оборудование от повышения или понижения поступающего напряжения, импульсных сетевых помех, нарушения порядка чередования фаз или исчезновения (обрыва) одной из них. Каждое из перечисленных нарушений способно привести к выходу электроприборов из строя или существенно повлиять на качество их работы. Устройство защиты может нейтрализовать негативное действие, либо произвести защитное отключение.

Например, импульсные скачки напряжения, возникающие при включении/отключении мощных потребителей (электродвигатели, сварочные аппараты, прочее), пагубно влияют на электронику другой техники, подключенной к той же сети. Подобные помехи могут возникать при перепадах на трансформаторных подстанциях. Все фазы УЗМ-3-63 имеют полупроводниковую варисторную защиту, способную сохранить потребитель и его работоспособность при импульсных перенапряжениях с токовой амплитудой до 6,5 кА.

Максимальное значение силы тока на каждой фазе, при котором сохраняется способность реле коммутировать контакты, составляет 63А, что является высоким показателем и позволяет использовать устройство без использования в цепи магнитного пускателя. УЗМ-3-63 может применяться, как на производственных объектах, так и в административных зданиях или быту, для подключения потребителей трехфазного тока.

Устройство не осуществляет защиту от разрушительного действия КЗ, а также не реагирует на утечки тока, поэтому применение в электрической цепи таких защитных средств, как АВ и УЗО, является обязательным.

Конструктивные особенности

Внешне изделие представляет собой единый корпус с четырьмя клеммами ввода (N, L1, L2, L3) и вывода (N, U, V, W). На передней панели имеются регуляторы настройки напряжения срабатывания(U макс, U мин) и времени включения после срабатывания. Они имеют настроечную шкалу, по которой пользователь может выбрать интересующие его значения. Здесь же расположены светодиодные индикаторы: зеленые – сигнализируют о наличии фаз L1, L2, L3; красные – о превышении (U>) или понижении (U<) напряжения; желтый ( ) – о работе силового реле.

Внутри корпуса расположены следующие элементы:

  1. Основу защитного устройства составляет мощное трехфазное поляризованное реле, позволяющее производить замыкание/размыкание цепи при больших значениях тока
  2. Варисторы, установленные на каждую фазу, обеспечивают защиту от импульсных сетевых скачков за счет способности изменять свое сопротивление в зависимости от величины поступающего напряжения
  3. Блок контактов, приводимый в действие силовым реле.

Схематичное изображение этих деталей приведено на рисунке ниже.

Встроенные элементы конструкции устройства защиты УЗМ-3-63

Встроенные элементы конструкции устройства защиты УЗМ-3-63

Работа защиты

Загорание зеленых светодиодов L1, 2, 3 сигнализирует о поступлении напряжения на вводные клеммы. При соответствии сетевых параметров заданным значениям (наличие всех фаз, порядок их чередования, напряжение, частота), по истечении выставленного таймера повторного включения, реле замыкает контакты. Электричество поступает на оборудование, о чем свидетельствует желтый индикатор ( ).

В случае какого-либо нарушения, прибор отключает подачу напряжения. При этом на передней панели перестает гореть желтый светодиод и отображается причина срабатывания:

Негативный факторИндикация нарушения
Превышение напряжения на входе сверх заданногоСветится «U>»
Понижение данного параметраЗагорается «U<»
Изменение порядка чередования фазКрасные светодиоды мигают попеременно
Возникновение перекоса, когда разница напряжения между фазами составляет более 25%Индикаторы красного цвета медленно моргают одновременно друг с другом
Отклонение частоты сети от значения 50 ГцБыстрое мерцание обоих индикаторов напряжения (<, >)

После отключения силового реле, при восстановлении параметров сети, начинается отсчет времени повторного включения, по истечении которого устройство возобновит подачу электричества на нагрузку.

Монтаж и схемы подключения

Устройство УЗМ-3-63 имеет крепление для монтажа на DIN рейку шириной 35 мм. Оно может устанавливаться в электрораспределительном щитке открыто, либо в пластиковом корпусе. Допускается вертикальное и горизонтальное расположение корпуса.

Существует две схемы подключения:

  1. Когда проводник N соединяется с обеими клеммами устройства на входе и выходе
  2. Когда соединение провода N производится только на входной клемме
Читайте так же:
Автоматический выключатель двухполюсный с25

Устройство защиты УЗМ-3-63 и схема подключения

Схема, на которой проводник N подсоединен на входе и выходе устройства

Устройство защиты УЗМ-3-63 и схема подключения

Схема, на которой проводник N подсоединен только на входе УЗМ-3-63

Для нормальной работы устройства, нулевая клемма должна быть задействована в обязательном порядке.

Основные эксплуатационные параметры

Для удобства ознакомления, технические характеристики защитного устройства приведены в таблице:

Название параметраПоказатель
Регулируемое значение превышения напряжения для отключения потребителя, Вольт243-297
Регулируемое значение падения напряжения для отключения потребителя, Вольт217-163
Допустимая разница напряжений между фазами, %менее 25
Допустимые колебания частоты сети, Гц+5; -5
max ток, который может быть поглощен при одиночном сетевом импульсе, А6500
max ток, который может быть поглощен при повторяющихся сетевых импульсах, А4500
Мощность потребителя номинальная, кВт14,5
Регулируемый таймер включения,2с-8мин
Допустимое сечение жил кабеля для клемм, мм²до 25
Рабочий режимкруглосуточно
Влажность воздуха при температуре +25°С, %80
Вес, кгне более 0,45
Рабочий ресурс, лет10

Существуют условия эксплуатации, соблюдение которых обеспечит выполнение устройством возложенных на него функций:

  • недопустимо образование конденсата на изделии;
  • исключение попадания на корпус брызг жидкостей;
  • использование на высоте до 2 км над уровнем моря;
  • состояние окружающего пространства неагрессивное и взрывобезопасное по газовому составу.

Хранение изделия в заводской упаковке допускается при температуре от -40 до +70°С, в течение 3 лет.

Важно знать, что УЗМ-3-63 не стоит применять при отсутствии трехфазного оборудования. В этом случае лучше поставить три отдельных устройства, например УЗМ-51М, что предотвратит обесточивание других потребителей при отсутствии напряжения на одной из фаз.

Аналоги устройства от других производителей

Рассматривая продукцию разных брендов, призванную выполнять функции по защите электрооборудования от возможных изменений состояния электрических сетей, можно отметить высокое качество исполнения и многофункциональность этих устройств. Они отличаются по названию и могут иметь различия в конструкции, но их объединяет общее назначение. Для сравнения, пользователям предлагается ознакомиться с некоторыми из них:

НазваниеБрендСтранаНеобходимость использования коммутирующих устройств (пускателей)Цена, руб.
УЗМ-3-63МеандрРоссияНет3800
РНПП-302Новатек — ЭлектроУкраинаДа3000
СР-731Евроавтоматика F&FБелоруссияДа3660
PNM-31ZAMELПольшаДа3800

Как можно увидеть из таблицы, разница в ценах между изделиями разных производителей, незначительная. Но в отличие от продукции Меандр, изделия других брендов требуют использования в цепи дополнительных пусковых аппаратов, потому что конструкции этих устройств предусматривают недостаточно высокие показатели коммутирующей способности:

  • перекидной релейный выключатель в изделии из Украины РНПП-302 рассчитан на токовую нагрузку 8А;
  • max ток катушки контактора в СР-731 от Белорусской производственной компании составляет 2 А;
  • max нагрузочная способность контакта Польского аналога PNM-31 – не превышает 16 А.

Такие значения не могут обеспечить самостоятельную коммутацию мощных потребителей, и способны послужить только для управления пускателем нагрузки.

Аналоги защитных устройств для контроля за состоянием трехфазной сети

Аналоги защитных устройств для контроля за состоянием трехфазной сети

Еще одним преимуществом УЗМ-3-63 является возможность дистанционного управления, через клеммы Y1 и Y2, расположенные в нижнем левом углу передней панели устройства.

Однако некоторые аналоги также имеют позитивные конструктивные особенности, выгодно отличающие их. Например, РНПП-302обладает цифровым дисплеем, визуально демонстрирующим состояние электросети, что представляет определенные удобства в процессе эксплуатации. Читайте также статью ⇒ Устройства защиты от импульсных перенапряжений.

Распространенные ошибки при монтаже и эксплуатации устройства

  1. Ошибка 1. Установка изделия на выходе из трехфазного электросчетчика и последующее распределение бытового напряжения, преобразованного в 220 Вольт по разным объектам (1 фаза – жилой дом, 2 фаза – гараж, 3 фаза — хозяйственные постройки). В случае нарушения на одной из фаз, устройство обесточит все ответвления, оставив усадьбу без электричества. Правильно будет установить отдельную защиту на каждую фазу, тогда отключение произойдет только на участке с нарушением.
  2. Ошибка 2. Подключение нагрузки, превышающей номинальную мощность, предусмотренную техническими характеристиками устройства на каждую фазу (более 14,5 кВт). Это недопустимо, потому что может привести к сбоям в работе изделия или выходу его из строя.
  3. Ошибка 3. Отказ от использования УЗО и АВ, как средств защиты. Устройство УЗМ-3-63 обеспечивает защиту оборудования от сетевых неполадок и работает только в этом направлении. Все нарушения, происходящие в обратном направлении, то есть исходящие от потребителя, оно не может ни предупредить, ни предотвратить. Поэтому применение защиты от коротких замыканий и от утечек тока лучше не игнорировать.

В заключении стоит отметить, что использование устройств, таких как УЗМ-3-63 значительно облегчает эксплуатацию электрооборудования, делает ее более безопасной и защищенной от нежелательных и вредных последствий воздействия сетевых нарушений.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector