Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

151128 (Элегазовый генераторный выключатель 10 кВ, 63 кА, 8000 А), страница 2

151128 (Элегазовый генераторный выключатель 10 кВ, 63 кА, 8000 А), страница 2

Документ из архива «Элегазовый генераторный выключатель 10 кВ, 63 кА, 8000 А», который расположен в категории «дипломные работы». Всё это находится в предмете «физика» из раздела «Студенческие работы», которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе «остальное», в предмете «физика» в общих файлах.

Онлайн просмотр документа «151128»

Текст 2 страницы из документа «151128»

3 Относится только к элегазовым генераторным выключателям, т.к. воздушные и вакуумные выключатели могут вызвать большие перенапряжения.

Одним из основных параметров, определяющих выбор выключателя, является номинальный ток отключения (Iо ном), обеспечивающий выполнение защитных функций. Как правило, при выборе выключателя принимается условие отключение максимального тока КЗ, протекающего через выключатель.

Требования к номинальному току и току отключения генераторного выключателя зависят от того, в каких генераторных цепях он установлен и какие оперативные и защитные функции на него возлагаются. Примерные современные и прогнозируемые величины номинальных токов и токов к.з. приведены в табл.1.2.[4].

Номинальное напряжение должно быть в пределах 16-30 кВ. Класс изоляции генераторных выключателей обычно устанавливается один на все номинальные напряжения – 24 или 36 кВ.

Номинальный ток в пределах 12-50 кА. Номинальный ток отключения, в зависимости от защитных функций, от номинального тока генератора до 400 кА.

Тип и характеристика

Номинальная мощность генераторов, МВА

Номинальное напряжение, кВ

Номинальный ток, кА

Ток к.з. генератора, кА

Ток генератора, поступающий через трансформатор из сети:

Действующее значение, кА

Амплитудное значение, кА

Ток динамической стойкости и ток включения от 270 до 1000 кА (амплитуда).

В дальнейшем предполагается работа генераторных выключателей в режиме АПВ.

Установка ГВ в цепях генераторов имеет следующие основные преимущества:

1. Достигается существенное повышение надежности эксплуатации, так как при аварийных отключениях генератора обеспечивается непрерывность питания системы собственных нужд 6—10 кВ. Без ГВ любое отключение генератора, в том числе и по режимным условиям, должно сопровождаться переключением ТСН с рабочего на резервный ТСН. Это существенно снижает надежность работы энергоблоков и электростанции в целом.

2. Обеспечивается возможность синхронизации генератора с сетью посредством ГВ, а не высоковольтными выключателями, установленными за повышающим трансформатором.

3. Обеспечивается возможность отключения генераторов по режимным условиям посредством генераторных выключателей, не затрагивая схем и высоковольтного оборудования открытого распределительного устройства (ОРУ) повышенного напряжения.

4. Представляется возможным применять более экономичные схемы электрических соединений с использованием укрупненных трансформаторов и с попарным присоединением турбогенераторов к ОРУ повышенного напряжения.

5. Обеспечивается возможность применения рабочих и резервных ТСН одинаковой мощности, что приводит к снижению токов к.з. В ряде случаев, например для тепловых электростанций с турбогенераторами мощностью 320 МВт, обеспечивается возможность применения более дешевых серий КРУ с меньшими токами отключения.

6. При наличии на электростанции более двух генераторов согласно нормам технологического проектирования ТЭС допускается установка одного резервного ТСН. Без ГВ требуется установка двух ТСН, что увеличивает стоимость и усложняет схему питания системы собственных нужд станции.

1.2 Схемы применения генераторных выключателей

Выбор типа и места установки ГВ определяется схемой и режимом работы блока электростанции, а также способом питания и ответственностью системы собственных нужд. При чисто блочной схеме выдачи мощности (генератор Г—повышающий трансформатор ПТ) генераторный выключатель в ряде случаев можно не устанавливать, а выполнение необходимых коммутационных операций возложить на коммутационный аппарат со стороны высшего напряжения. На рис. 1.2 показана схема соединения генератора с повышающим трансформатором без ГВ [5].

Рис.1.2. Схема блока генератор — повышающий трансформатор без генераторного выключателя

Питание системы собственных нужд блока в нормальных условиях обеспечивается через выключатель высшего напряжения (В1). В случае планового или аварийного отключения блока питание системы собственных нужд автоматически переключается с трансформатора собственных нужд ТСН1 на ТСН2 через выключатели В2, ВЗ и В4. Во время строительства и ввода в эксплуатацию станции питание ее системы собственных нужд также осуществляется от общестанционного ТСН2. При повреждении ТСН1 ток к.з., текущий от генератора через место повреждения в ТСН1, отключается на стороне высшего напряжения выключателем В1. За счет большой энергии, выделяемой в ТСН1 при повреждении, бак его может быть разрушен до отключения тока к.з. выключателем В1. Для защиты от повреждений в системе собственных нужд генератора Г и ПТ применяется ГВ (рис. 1.3).

Для схем с укрупненными электрическими блоками на ГЭС (рис.1.4 – 1.6) токи КЗ от системы и других генераторов через выключатель превышают токи КЗ от генератора в 3-6 раз.

Установка ГВ в схеме блока Г—ПТ уменьшает перегрузки генератора и ТСН при несимметричных к.з. в сети высшего напряжения и при неправильной синхронизации. Это связано с тем, что выключатели на стороне высшего напряжения имеют обычно меньшее время отключения по сравнению со временем отключения ГВ. Поэтому при повреждении в цепи ГВ сначала отключается выключатель В1 па стороне высшего напряжения, а затем ГВ. ТСН коммутируется выключателем В2 схемы собственных нужд. Защита от повреждений в ПТ или ТСН может осуществляться либо с помощью ГВ, либо снятием возбуждения с генератора. Применение ГВ в данном случае предпочтительно, так как позволяет сократить продолжительность тока к.з. с 4—5 с до 0,06—0,1 с. При этом на несколько порядков уменьшается выделяемая энергия, пропорциональная , где I—ток к.з., t—длительность тока к.з., что позволяет резко уменьшить объем и последствия повреждений.

Имеются решения, когда по указанным причинам в цепи генератора установлен выключатель нагрузки — аппарат, рассчитанный на выполнение только оперативных функций выключателя, а защитные функции возложены на выключатель ВН. Это облегчает условия работы выключателя ВН и управления агрегатом.

Как показывают расчеты, указанные решения недостаточны для защиты трансформатора при внутренних КЗ, так как продолжительность тока КЗ при отсутствии выключателя определяется временем гашения поля генератора, которое составляет порядка 1,5 с. Такое время подпитки дуги КЗ в трансформаторе приводит к разрушению бака, возгоранию масла и обмоток трансформатора. Отечественный и зарубежный опыт это подтверждает, после такой аварии трансформатор не восстанавливается.

При наличии выключателя в цепи генератора ток КЗ прерывается за 0,05-0,1 с. В этом случае, как показывает практика, разрушение бака трансформатора не происходит и поврежденный трансформатор восстанавливается.

Поэтому установку в цепи генератора выключателя, обеспечивающего отключение тока КЗ от генератора, следует считать обязательной и это будет соответствовать ГОСТ 12.1.010 «Взрывобезопасность. Общие требования.» Пункт 2.6 «Предотвращение возникновения источника инициирования взрыва должно быть обеспечено: . применением быстродействующих средств защитного отключения возможных электрических источников инициирования взрыва.»

Что касается отключения тока КЗ от системы, то как показывает практика, оно может быть возложено на выключатель ВН, при этом время воздействия на оборудование тока подпитки КЗ от энергосистем будет снижено, а ощутимых последствий по снижению надежности из-за перевода питания сети собственных нужд на резервный трансформатор не ожидается.

Применение ТСН на станциях выполняется по схемам с верхней (вариант I) и нижней (вариант II) перемычкой (рис. 1.7). Особенности упомянутых схем хорошо иллюстрируются в схеме объединенного блока. При повреждении ТСН1 или ТСН2 в схеме с верхней перемычкой необходимо отключать весь блок. При повреждении ТСН1 или ТСН2 в схеме с нижней перемычкой ГВ1 или ГВ2 соответственно отключают аварийно только один блок из двух. Оба варианта по надежности и затратам практически равноценны. Выбор схемы включения ТСН определяется ответственностью системы собственных нужд. В связи с этим на АЭС предпочтение отдается схеме с нижней перемычкой.

Читайте так же:
Выключатель для скрытой установки двухклавишный valena 774402 10а 220в

Рис.1.7. Упрощенная схема электростанции с двумя повышающими трансформаторами.

Имеются и другие схемы, в которых применение ГВ обеспечивают высокую гибкость, надежность системы и экономическую эффективность. Так, в схеме объединенных и укрупненных блоков применяется чередование схем с верхней и нижней перемычками. Ряд отечественных и зарубежных станций с крупными блоками для повышения надежности питания системы собственных нужд комплектуется дополнительным резервным дизель-генераторным источником питания.

Для схем с генераторными выключателями, обеспечивающими отключение токов КЗ только от генераторов, необходимо применение соответствующей логики действия электрических защит.

Проведенные предварительные проработки показывают, что изменения в логике действия защит будут в основном касаться дифференциальных защит генератора, блочного трансформатора и блока.

Дифференциальная защита генератора и дифференциальная защита блока должны сначала действовать на отключение выключателя ВН в укрупненных электрических блоках и на отключение выключателей неповрежденных цепей генераторов. После отключения указанных выключателей должен отключаться выключатель поврежденной цепи, затем должен включаться выключатель ВН для восстановления питания собственных нужд, а в укрупненных электрических блоках могут включаться в сеть генераторы с неповрежденными цепями.

Дифференциальная защита блочного трансформатора должна действовать одновременно на отключение выключателя ВН и выключателя генератора поврежденной цепи.

В зону действия дифференциальной защиты генератора следует включать генераторный выключатель.

1.3 Токоведущая система и система контактов

Выпускаемые промышленностью ГВ имеют различные электрические схемы. Рассмотрим основные из них, поясняющие принцип работы ГВ.

Наиболее простая схема (рис. 1.8, а) содержит главные 1 и дугогасительные 2 контакты. Для этой схемы в отключенном положении выключателя контакты 2 всегда разомкнуты.

Включение выключателя выполняют либо главными контактами 1 (контакты 2 при этом могут оставаться в разомкнутом состоянии или замыкаться после замыкания контактов 1), либо дугогасительными контактами 2, после которых замыкают главные контакты 1.

Порядок оперирования при отключении: размыкаются контакты 1, ток из главной цепи переходит в цепь контактов 2, а затем размыкаются контакты 2. Если во включенном положении контакты 2 разомкнуты, то по команде на отключение выключателя до начала размыкания контактов 1 замыкаются контакты 2 (только на время оперирования). После этого отключение происходит, как описано выше.

Ликвидация аварий в сети 6-10 кВ рабочие моменты

Итак, хотя о методах отыскания места повреждения на ВЛ 6-10 кВ написано очень много, как во всевозможных книгах, так и на просторах интернета, я попробую выделить главное.

Ликвидация аварии в сетях с изолированной нейтралью (распределительные сети 6-10 кВ).

Вступление.
При появлении признака аварии в распределительных сетях, оперативный персонал, находящийся на смене, должен руководствоваться не только инструкциями по ликвидации аварии или нештатной ситуации, но и личными знаниями о работе распределительного комплекса сети, работе релейной защиты, правилами по переключениям и так далее. Поэтому подготовка оперативного руководителя оперативно-диспетчерской группы (далее диспетчер ОДГ) весьма трудоемкий и ответственный процесс. Подготовка диспетчера может длиться до одного года. За это время кандидат изучает инструкции по оборудованию, которое установлено на подстанциях, схему сети и топологию сети, кольцующиеся фидера, наличие и расстановку секционирующих ячеек или секционирующих разъединителей, пропускную способность ВЛ, карты уставок РЗА, информацию о замерах в летний и зимний режимные дни, правильное применение средств защиты от поражения электрическим током и так далее. То есть все то, чем ему, в последствии, придется руководить и от его умения зависит быстрота принятий тех или иных решений, направленных на скорейшую ликвидацию нарушения энергоснабжения потребителей. Поэтому неплохо если кандидат в диспетчера для начала поработает электромонтером в оперативно-выездной бригаде (ОВБ).

Возникающие трудности.
Ни для кого не секрет что энергетика Российской Федерации сейчас переживает не самые лучшие времена. Хотя в последнее время и увеличился объем установки новейшего оборудования – это все равно «капля в море». Бюрократия, знаете вещь такая.
Итак, рассмотрим трудности.
1)Устаревшее оборудование. Как уже сказано, бюрократия тормозит закупки нового оборудования. Труды на создание многолетних планов ремонта или замены оборудования, которые проходят многоступенчатую процедуру утверждения порой сходят на нет. Так подав заявку на приобретение вакуумного выключателя, с заменой релейной части на микропроцессорную, последнюю могут завернуть. Так как перенаправление средств на более важную задачу, в планах есть полная замена релейной части уже все подстанции и так далее. Причин может быть множество, но как часто бывает, вакуумный выключатель привезли, а релейная часть остается на старых и добрых реле. Очень хочется верить, что перенаправленные средства действительно пошли на нужное дело, а не тек что бы – ой, не получилось.
2)Трассировка ВЛ. Как правило, ВЛ построены еще в 60 годах. За это время появилось множество населенных пунктов, всяких СНТ, ДПК и им подобным, и трасса ВЛ может проходить так интересно, учитывая появившиеся отпайки, что и на схеме трудно понять. А если принять еще и карту местности, то получается, что две секционирующие ячейки стоят, согласно схеме, в десяти пролетах друг от друга, а проехать от одной к другой – надо давать круг, километров пять, потому что между ними к примеру река и моста или брода нет. Конечно, это довольно трудный вопрос, но все же не стоит сбрасывать со счетов.
3)Квалификация персонала. Про диспетчеров ОДГ я уже написал во вступлении, остался оперативный персонал ОВБ. Оперативный персонал ОВБ – это глаза и руки диспетчера ОДГ. После грамотного осмотра персоналом ОВБ диспетчер ОДГ всегда примет правильное решение. Так же существующий взаимоконтроль операций гарантированно уменьшает вероятность ошибок. Кстати во много раз сокращается время поиска места повреждения, если оперативный персонал ОВБ грамотный, имеет навыки работы с инструментом, знание трассы ВЛ, узкие места, принципы работы оборудования и так далее.
4)Коммутационные аппараты. Точнее их отсутствие. Встречаются ВЛ 6-10 кВ длинною более 30 км, а по магистральному проводу и делить то нечем. Чем локализовать участок ВЛ? Снятием шлейфов на ВЛ где ни будь посередине? А ели опоры не подъемные – вызывай вышку? А это как всегда время.
5)Потребительские ТП (КТП, СТП и так далее). Законодательно, разрешено потребителю, как юридическому, так и физическому лицу ставить собственные КТП. При этом Все знают о правах и банально забывают об ответственности. Не буду разбирать ПТЭ ЭП и федеральные законы, скажу просто, с потребителем надо работать плотно. Доходит до того, что КТП есть, а обслуживающего персонала нет и так далее. В моем понимании если со стороны потребителя произошло нарушение ПТЭ ЭП или действующих Федеральных законов, то их надо отключать с обязательным направлением жалоб в Ростехнадзор и к Гарантирующему поставщику электрической энергии.

Межфазное короткое замыкание. При межфазном коротком замыкании выключатель (В) на подстанции (питающий центр) отключается от действия защит.
Здесь реализованы простейшие защиты –это максимальная токовая защита (МТЗ), и токовая отсечка (ТО).
Как всем понятно МТЗ отстраивается от тока короткого замыкания в конце линии, выполняется с выдержкой по времени и защищает всю длину ВЛ, а ТО выполняется от максимального тока короткого замыкания защищаемого участка, как правило, не более 20% от длины ВЛ, выдержка по времени отсутствует.
При межфазном коротком замыкании поиск повреждения более понятен, так как все уже случилось.
Рассмотрим рисунок 1 (Здесь питающий центр среднестатистическая подстанция, блочного типа, релейная часть на аналоговых реле)).

Читайте так же:
Автоматический выключатель назначение маркировка

Действия диспетчера ОДГ
1) Получить сообщение от дежурного персонала подстанции об отключении ВВ (необходимо зафиксировать время прибытия) дать команду: -произвести осмотр оборудования подстанции (здесь ОБЯЗАТЕЛЬНО пометить от какой защиты отключен ВВ, если стоит масляный выключатель, то проверить наличие масла в масломерном стекле и его состояние (черным оно быть не должно), опять же если это масляный выключатель, то необходимо уточнить у персонала подстанции количество аварийных отключений).
2) Далее после того как диспетчеру ОДГ доложит персонал подстанции, что произведен осмотр, замечаний нет, масло в норме (если масляный выключатель, нам повезло у нас вакуумный), необходимо пробовать РПВ. Да именно РПВ, так как опробование РПВ прописывается в инструкциях по ликвидации нарушений нормального режима работы сети.
3) РПВ неуспешное. Диспетчер ОДГ направляет бригаду ОВБ РЭС к ЛР 2. Почему к ЛР 2? Объясняю, если при отключении ЛР 1 РПВ будет неуспешно, то необходимо будет двигаться к ЛР 2 или ЛР ДПК, при этом ЛР 1 придется включить, и если повреждение будет на участке между ЛР 1 и ЛР 2, то придется ехать опять к ЛР 1, чтобы его отключить. Это необходимо для того чтобы частично запитать потребителей головного участка. Но все это опять же носит рекомендательный характер. Топология местности, пути подъезда, удаленность от базы. То есть это все должен проанализировать персонал дающий команду – диспетчер ОДГ.
4) Также необходимо связаться с потребителем ДПК. В идеале у них есть свой персонал (наемный – не важно), который может отключить ЛР ДПК. Как вариант, если есть трудности при работе с потребителями, то необходимо прописывать в эксплуатационном соглашении возможность однократной операции с ЛР (или СД) при ликвидации аварии, либо подписывать некое соглашение о взаимоотношениях, с указанием возможности операций с ЛР. По мне так первый вариант более реален. Самый отвратительный вариант –это никого нет и ЛР ДПК за забором. Здесь однозначно искать хозяев. Правда тут можно схитрить, срезать шлейфа (но если конечно повреждение ТОЧНО у ДПК) и ждать когда сами позвонят. При этом необходимо собрать полную информацию о времени и предполагаемом месте повреждения и приготовиться к защите.
5) После прибытия бригады ОВБ РЭС – осмотреть опорно-стержневую изоляцию, контактную систему, привод, и саму раму привода. Отключить ЛР 2, проверить его отключенное положение.
6) Персоналу подстанции дать команду опробовать РПВ. Неуспешно.
7) Персоналу ОВБ дать команду – осмотреть опорно-стержневую изоляцию, контактную систему, привод, и саму раму привода. Включить ЛР 2, проверить его включенное положение. Выдвинуться к ЛР ДПК.
8) После прибытия бригады ОВБ РЭС – осмотреть опорно-стержневую изоляцию, контактную систему, привод, и саму раму привода. Отключить ЛР ДПК, проверить его отключенное положение. (данная операция должна быть прописана в подписанном обеими сторонами в эксплуатационном соглашении)
9) Персоналу подстанции дать команду опробовать РПВ. Неуспешно.
10) Персоналу ОВБ дать команду – осмотреть опорно-стержневую изоляцию, контактную систему, привод, и саму раму привода. Включить ЛР ДПК, проверить его включенное положение. Выдвинуться к ЛР 1.
11) После прибытия бригады ОВБ РЭС – осмотреть опорно-стержневую изоляцию, контактную систему, привод, и саму раму привода. Отключить ЛР 1, проверить его отключенное положение.
12) Персоналу подстанции дать команду опробовать РПВ. Успешно. Так, получается участок повреждения локализован. Это между ЛР 1 и ЛР 2. Теперь получив разрешение от диспетчера ОДГ – необходимо выполнить обход/осмотр ВЛ, без права производства работ.
Далее уже понятно, что когда найдут повреждение, готовится рабочее место, согласно наряда на производство работ, согласно Правил охраны труда при работах в действующих электроустановках.
Что бы к примеру сократить время ликвидации нарушений нормально режима работы сети, то необходимо вместо ЛР 1 и ЛР 2 поставить секционирующие выключатели (реклоузеры), к ним также поставить индикаторы короткого замыкания, и всю это информацию вывести на дисплей диспетчера ОДГ РЭС, с возможностью телеуправления. По потребителю ДПК, то им необходимо еще при подключении к сетям прописывать в технических условиях необходимость установки реклоузера и уставки по защите и ее селективности.
Рассмотрим рисунок 2. Вот так должна быть выглядеть схема ВЛ 6-10 после реконструкции.

Еще лучше если у нас не радиальные, а кольцующие сети. Здесь намного все упрощается. Всегда есть резерв. Повреждение в «голове» – запитали «хвост» и наоборот. Только не всегда, конечно, закольцовки удобны. Всегда больной вопрос: «А почему именно здесь стоит секционирующая ячейка?» Вот поэтому я и предлагаю проводить анализ кольцующихся фидеров, места нормальных разрывов должны быть понятны, удобны. Что ж, если для этого требуется перенос ячейки, то давайте, сделаем. Если все мероприятия, которые направлены на надежность электроснабжения, то я всегда за. В конечном итоге это наш спокойный вечер в кругу семьи.

Однофазное короткое замыкание на «землю» («земля»). Это самое неудобное и тяжелое повреждение. Рассмотрим несколько ключевых моментов.
1) При однофазном коротком замыкании ВЛ 6-10 не отключиться (есть конечно возможность реализовать земляную защиту, и она реализуется в принципе если есть угроза сильного возгорания (торфяники к примеру), но почему то, может из-за экономии она практически не ставиться). А это значит: провод лежит на земле, есть угроза попадания под шаговое напряжение людей, животных. Также в месте повреждения «горит» дуга и это все может перерасти в межфазное короткое замыкание с большим ущербом. Прохождение однофазного тока короткого замыкания на «землю» через тело опоры – повреждение опоры. Повреждение самого трансформатора (ТН) на подстанции.
2) Соответственно, при таком режиме переключаться разъединителями нельзя. Необходимы кратковременные отключения всей ВЛ, при отыскании поврежденного участка. Это опять же говорит в пользу «реклоузеров».
3) Трудность отыскания места повреждения. Небольшая трещина опорного изолятора с земли может быть и не заметна.
4) Перекосы в сети 0,4 кВ, а если стоит трансформатор Y-Y, то и отсутствие одной фазы. Все это, безусловно, отразиться на потребителях.
При поступлении сообщения о дежурного подстанции, что появилась «земля» на СШ 6-10 кВ, необходимо сразу запросить данные с киловольтметра. К примеру, если у Вас фазные напряжения А-0=0 кВ, В-0=5,5 кВ, С-0=5,5 кВ – это говорит о повреждении ТН (одна из самых простых причин, которую может устранить дежурный подстанции, так это замена высоковольтной вставки на фазе А).
И так у нас «земля». Фазное напряжение А-0=0 кВ, В-0=10 кВ, С-0=10 кВ.
Следовательно, надо в кратчайшие сроки определить место повреждение. На ВЛ 6-10 кВ или на СШ 6-10 кВ. Естественно, тут необходимо кратковременное поочередное отключение фидеров (если у Вас конечно не цифровой терминал). Стоит отменить, что если кратковременное поочередное отключение не помогло, то необходимо отключить все фидера запитанные от секции, не стоит забывать об одноименном однофазном коротком замыкании на «землю». Да, случается и такое. Отключив ВСЕ выключатели отходящих ВЛ –делаем контроль изоляции СШ. Прекос пропал – хорошо. Тогда начинаем включать ВВ обратно по одному, каждые раз проверяя контроль изоляции СШ 6-10 кВ. Кстати, если у Вас трансформатор напряжения 6-10 кВ на подстанции НТМИ, будьте осторожны, на холостой секции он всегда даст перекос по напряжению. Варианта два по одному включать фидера или, если в наличии вторая СШ 6-10 кВ (без «земли») то можно их объединить чере секционный выключатель и проверить контроль изоляции на втором ТН.
После определения фидера с однофазным замыкание на «землю» (рисунок 1) необходимо отправить бригаду ОВБ РЭС на поиски и устранение места повреждения. ОБЯЗАТЬЛЬНО проинформировав , что в линии «земля» и все команды по отключении или включению ЛР давать после уведомления бригады ОВБ РЭС, что напряжение снято, выключатель отключен и приняты меры исключающие его ошибочное или самопроизвольное включение.
Первым делом, опять же стоит локализовать участок, находящийся на повреждении. То есть оперировать, при отключенном ВВ, ЛР 1. Если «земля», после отключения ЛР 1 пропала, то уже становиться ясно, что повреждение за ним. Снова отключаем ВВ, включаем ЛР 1, и даем команду бригаде ОВБ РЭС выдвинуться к опоре от которой отходит отпайка на ДПК. Как только бригада подъедет к месту, включить ВВ (ОБЯЗАТЕЛЬНО предупредив об этом персонал ОВБ) и уже с помощью КВАНТА, ПОИСКА и им подобным определить в какую сторону «течет» ток. Как только будет понятно направление тока (или его отсутствие), начинаем действовать. Не буду рассматривать повреждение за ЛР 2 или ЛР ДПК (тут уже понятно). Рассмотрим повреждениие «за спиной». Итак, тока нет, значит, повреждение в строну ЛР 1. Тут несколько вариантов. Либо при отключеной ВЛ начинаем проводить осмотр данного участка, либо едем к ЛР 1, отключаем ВВ, отключаем ЛР 1, включаем ВВ, и проводим осмотр участка от ЛР 1 до отпайки на ДПК. Второй вариант более приемлем, так как мы частично запитали потребителей и имеем положительную динамику устранения места повреждения.

Читайте так же:
Как работает автоматический выключатель для постоянного тока

Главное. Не забывайте о правилах по охране труда при работах в электроустановках, правил переключений, ПТЭ ЭС, ПУЭ.

СПОСОБ ОТКЛЮЧЕНИЯ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ В ЦЕПЯХ ЭНЕРГОБЛОКОВ Российский патент 2003 года по МПК H02H3/26 H02H3/08

Изобретение относится к способам отключения токов короткого замыкания в цепях энергоблоков и может быть использовано в электроэнергетике для защиты генераторных цепей энергоблоков теплоэлектростанции.

Известен способ отключения токов короткого замыкания в цепях энергоблоков, содержащих последовательно соединенные генератор, генераторный выключатель, трансформатор, высоковольтный выключатель, устройства релейной защиты генератора, трансформатора и энергоблока. Согласно указанному способу в зоне действия релейных защит трансформатора и генератора измеряют величину тока и при превышении заданного значения тока подают сигнал на отключение генераторного выключателя (А.М. Федосеев. Основы релейной защиты. М.: Госэнергоиздат, 1961, с.386-388).

Недостатками указанного способа являются увеличение размеров и повышение стоимости выключателей вследствие необходимости применения выключателей на предельно возможные токи отключения, а также ограничение области их применения.

Наиболее близким по технической сущности является способ отключения токов короткого замыкания в цепях энергоблоков теплоэлектростанций, содержащих последовательно соединенные генератор, генераторный выключатель, трансформатор, высоковольтный выключатель, устройства релейной защиты генератора, трансформатора и энергоблока, при котором в зоне действия устройств релейных защит измеряют величину тока и сравнивают с заданным значением тока. При коротком замыкании в зоне действия устройства релейной защиты подают сигнал на отключение высоковольтного выключателя, контролируют отключение высоковольтного выключателя и подают сигнал на отключение генераторного выключателя. Контролируют отключение генераторного выключателя и подают сигнал на включение высоковольтного выключателя (пат. РФ 2168255, 28.05.2001, Н 02 Н 3/26, 3/28).

Недостаток известного способа заключается в том, что при любых повреждениях в цепи генератора происходит срабатывание высоковольтного выключателя, в том числе и при значениях измеряемого тока ниже номинального тока отключения генераторного выключателя, тем самым снижается эффективность использования обоих выключателей.

Задачей изобретения является создание защиты, позволяющей более эффективно в гибком режиме использовать работу генераторного и высоковольтного выключателей в зависимости от величины токов короткого замыкания в генераторных цепях. При этом также исключается необходимость в применении генераторных выключателей на предельно возможные токи отключения, не происходит увеличения их массогабаритных характеристик и тем самым повышения стоимости.

Для решения поставленной задачи в способе отключения токов короткого замыкания в цепях энергоблоков теплоэлектростанций, содержащих последовательно соединенные генератор, генераторный выключатель, трансформатор, высоковольтный выключатель, и устройства релейной защиты генератора и энергоблока, фиксируют превышение заданного значения величины тока зоне действия устройства релейной защиты, контролируют величину тока в зоне действия устройства релейной защиты, сравнивают контролируемую величину со вторым заданным значением тока и формируют команду на отключение высоковольтного выключателя при превышении контролируемой величины тока второго заданного значения, контролируют его отключение, подают сигнал на отключение генераторного выключателя, а при выполнении условия, при котором контролируемая величина тока меньше второго заданного значения тока, подают команду на отключение генераторного выключателя. При этом второе заданное значение тока равно величине номинального тока отключения генераторного выключателя.

На чертеже представлена схема для осуществления предложенного способа.

Схема энергоблока содержит последовательно соединенные генератор 1, генераторный выключатель 2, трансформатор 3 и высоковольтный выключатель 4, а также устройство релейной защиты 5 генератора, например устройство дифференциальной защиты, и устройство релейной защиты 6 энергоблока, например устройство дифференциальной защиты. Два логических блока 7 и 8, содержащие комбинацию логических элементов И, ИЛИ и НЕ, соединены с выходом устройства релейной защиты 5 генератора и с реле максимальной токовой защиты 9. Выход логического блока 7 подключен к исполнительному органу высоковольтного выключателя 4. Выход логического блока 8 соединен с исполнительным органом генераторного выключателя 2. Устройство релейной защиты 6 энергоблока через блок задержки 10 подсоединено к логическим блокам 7 и 8. Блок-контакт высоковольтного выключателя 4 подключен к исполнительному органу генераторного выключателя 2. Блок-контакт генераторного выключателя соединен с исполнительным органом высоковольтного выключателя (на схеме исполнительные органы не показаны).

Способ осуществляется следующим образом.

В нормальном режиме генераторный выключатель 2 и высоковольтный выключатель 4 включены. При коротком замыкании в зоне действия релейной защиты генератора устройство релейной защиты 5 генератора фиксирует первое заданное значение величины тока и при его превышении срабатывает. При его отказе аналогично срабатывает устройство релейной защиты 6 блока с выдержкой во времени. Реле максимальной токовой защиты 9 контролирует превышение величины тока второго заданного значения, равного величине номинального тока отключения генераторного выключателя, срабатывает и подает сигнал на логические блоки 7 и 8. На последние также поступают сигналы при срабатывании устройства релейной защиты 5 генератора и устройства релейной защиты 6 энергоблока через блок задержки 10. В случае подачи на логический блок 7 сигналов от устройства релейной защиты 5 генератора или от устройства релейной защиты 6 блока через блок задержки 10 и сигнала от реле максимальной токовой защиты 9, он посылает команду на исполнительный орган высоковольтного выключателя 4 для его отключения. А через блок-контакт высоковольтного выключателя 4 подают сигнал на отключение генераторного выключателя 2. Это позволяет отключить генераторный выключатель 2 после отключения высоковольтного выключателя 4. После отключения генераторного выключателя 2 через его блок-контакт подается команда на включение высоковольтного выключателя 4. Логический блок 8 посылает команду на исполнительный орган генераторного выключателя 2 для его отключения в случае подачи на него сигналов от устройства релейной защиты 5 генератора или от устройства релейной защиты 6 блока через блок задержки 10 и отсутствия сигнала от реле максимальной токовой защиты 9.

Читайте так же:
Как открыть выключатель пралеска

Предлагаемый способ, учитывая дискретность номинальных параметров генераторных выключателей, позволяет отключить токи короткого замыкания в зоне действия релейной защиты генератора генераторными выключателями в более чем 50% случаев.

Похожие патенты RU2206165C1

  • Подъячев В.Н.
  • Стогний Т.А.
  • Максимкина Н.Т.
  • Подъячев В.Н.
  • Евтушенко В.А.
  • Кузьмичева К.И.
  • Беляков Н.Н.
  • Бараев Александр Васильевич[Ua]
  • Конюхов Александр Иванович[Ua]
  • Воронин Владимир Александрович
  • Иванов Игорь Аристотельевич
  • Косолапов Антон Михайлович
  • Любарский Дмитрий Романович
  • Шульгинов Николай Григорьевич
  • Жуков Андрей Васильевич
  • Воробьев Виктор Станиславович
  • Максимов Борис Константинович
  • Арцишевский Ян Леонардович
  • Расщепляев Антон Игоревич
  • Кузин Андрей Сергеевич
  • Воронин Владимир Александрович
  • Подъячев Виктор Николаевич
  • Бочкарев Вадим Наркисович
  • Шамис М.А.
  • Козина Н.И.
  • Нехаева Л.О.
  • Борисов Леонид Филиппович
  • Бочкарев Вадим Наркисович
  • Малышкин Сергей Борисович

Реферат патента 2003 года СПОСОБ ОТКЛЮЧЕНИЯ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ В ЦЕПЯХ ЭНЕРГОБЛОКОВ

Изобретение может быть использовано в электроэнергетике для защиты генераторных цепей энергоблоков теплоэлектростанций. Технический результат заключается в создании защиты, позволяющей более эффективно в гибком режиме использовать работу генераторного и высоковольтного выключателей в зависимости от величины токов короткого замыкания в генераторных цепях. Для этого энергоблок содержит последовательно соединенные генератор, генераторный выключатель, трансформатор и высоковольтный выключатель и устройства релейной защиты генератора и энергоблока. В случае короткого замыкания фиксируют превышение заданного значения величины тока. Величину тока контролируют и сравнивают со второй, заданной величиной тока, равной величине номинального тока отключения генераторного выключателя. В случае превышения контролируемой величины тока второго заданного значения формируют команду на отключение высоковольтного выключателя, контролируют его отключение и подают сигнал на отключение генераторного выключателя. В случае, при котором контролируемая величина тока меньше второго заданного значения, подают команду на отключение генераторного выключателя. 1 з.п.ф-лы, 1 ил.

Формула изобретения RU 2 206 165 C1

1. Способ отключения токов короткого замыкания в цепях энергоблоков теплоэлектростанций, содержащих последовательно соединенные генератор, генераторный выключатель, трансформатор, высоковольтный выключатель, и устройства релейной защиты генератора и энергоблока, в соответствии с которым при коротком замыкании фиксируют превышение заданного значения величины тока в зоне действия устройства релейной защиты, формируют команду на отключение высоковольтного выключателя, контролируют его отключение и подают сигнал на отключение генераторного выключателя, отличающийся тем, что после фиксирования превышения заданного значения величины тока контролируют величину тока в зоне действия устройства релейной защиты, сравнивают ее со вторым заданным значением величины тока и осуществляют формирование команды на отключение высоковольтного выключателя при превышении контролируемой величины тока второго заданного значения, а при выполнении условия, при котором контролируемая величина тока меньше второго заданного значения, подают команду на отключение генераторного выключателя. 2. Способ по п.1, отличающийся тем, что второе заданное значение тока равно величине номинального тока отключения генераторного выключателя.

Высоковольтный выключатель

Высоковольтный выключатель — коммутационный аппарат, предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме в нормальных или аварийных режимах при ручном, дистанционном или автоматическом управлении.

Высоковольтный выключатель состоит из: контактной системы с дугогасительным устройством, токоведущих частей, корпуса, изоляционной конструкции и приводного механизма (например, электромагнитный привод, ручной привод).

В соответствии с ГОСТ Р 52565-2006 выключатели характеризуются следующими параметрами:

    Uном (напряжение сети, в которой работает выключатель); Iном (ток через включённый выключатель, при котором он может работать длительное время);
  • номинальный ток отключения Iо.ном — наибольший ток короткого замыкания (действующее значение), который выключатель способен отключить при напряжении, равном наибольшему рабочему напряжению при заданных условиях восстанавливающегося напряжения и заданном цикле операций;
  • допустимое относительное содержание апериодического тока в токе отключения;
  • если выключатели предназначены для автоматического повторного включения (АПВ), то должны быть обеспечены циклы:

где О — операция отключения, ВО — операция включения и немедленного отключения, 180 — промежуток времени в секундах, tбп — гарантируемая для выключателей минимальная бестоковая пауза при АПВ (время от погасания дуги до появления тока при последующем включении). Для выключателей с АПВ должно быть в пределах 0,3…1,2 с, для выключателей с БАПВ (быстродействующей) — 0,3 с.

  • устойчивость при сквозных токах КЗ, которая характеризуется токами термической стойкости Iт и предельным сквозным током
  • номинальный ток включения — ток КЗ, который выключатель с соответствующим приводом способен включить без приваривания контактов и других повреждений при Uном и заданном цикле.
  • собственное время отключения — промежуток времени от момента подачи команды на отключение до момента начала расхождения дуго-гасительных контактов.
  • параметры восстанавливающегося напряжения при номинальном токе отключения — скорость восстанавливающегося напряжения, нормированная кривая, коэффициент превышения амплитуды и восстанавливающегося напряжения.

Выключатели среднего и высокого напряжения (номинальное напряжение 6 — 220 киловольт) и большим током отключения (до 50 килоампер) используются на электрических станциях и подстанциях. Эти выключатели представляют собой довольно сложную конструкцию, управляемую электромагнитными, пружинными, пневматическими или гидравлическими приводами. В зависимости от среды, в которой производят гашение дуги, различают воздушные выключатели, в которых дуга гасится сжатым воздухом, масляные выключатели, в которых контакты помещаются в ёмкость с маслом, а дуга гасится парами масла, электромагнитные выключатели (как правило до 10 кВ), с так называемым магнитным дутьём и дугогасительными камерами с узкими щелями или решётками, элегазовые выключатели, в которых используется электропрочный газ SF6 — «элегаз», и вакуумные выключатели, в которых дугогашение происходит в вакууме — в так называемой вакуумной дугогасительной камере (ВДК). Защитная среда одновременно с дугогашением обеспечивает и диэлектрическую прочность промежутка между контактами в отключенном положении, от чего зависит и величина хода контактов.

    (баковые и колонковые); ; (баковые и маломасляные); ; ; ; .
  • Сетевые выключатели на напряжения от 6 кВ и выше, применяемые в электрических цепях (кроме цепей электрических машин и электротермических установок) и предназначенные для пропускания и коммутирования тока в нормальных условиях работы цепи, а также для пропускания в течение заданного времени и коммутирования тока в заданных ненормальных условиях, таких как условия короткого замыкания
  • Генераторные выключатели на напряжения от 6 до 20 кВ, применяемые в цепях электрических машин (генераторов, синхронных компенсаторов, мощных электродвигателей) и предназначенные для пропускания и коммутаций тока в нормальных условиях, а также в пусковых режимах и при коротких замыканиях. Отличаются, как правило, большими значениями номинального тока (до 10000 А) и тока отключения.
  • Выключатели на напряжение от 6 до 220 кВ для электротермических установок, применяемые в цепях крупных электротермических установок (например, сталеплавильных, руднотермических и других печей) и предназначенные для пропускания и коммутаций тока в нормальных условиях, а также в различных эксплуатационных режимах и при коротких замыканиях.
  • Выключатели нагрузки — выключатели, предназначенные для коммутаций под номинальным током, но не рассчитанные на разрыв сверхтоков. Применяются в сетях 3-10 кВ с изолированной нейтралью для коммутации небольших нагрузок — до нескольких мегавольт-ампер.
  • Реклоузеры — подвесные секционирующие дистанционно управляемые выключатели, снабжённые защитой и устанавливаемые на опорах воздушных ЛЭП
  • Выключатели специального назначения.
  • Опорные, то есть имеющие основную изоляцию на землю опорного типа.
  • Подвесные, то есть имеющие основную изоляцию на землю подвесного типа.
  • Настенные, то есть укрепленные на стенах закрытых распредустройств.
  • Выкатные, то есть имеющие приспособления для выкатывания из ячеек распредустройств (для обслуживания, ремонта и для создания т.н. «видимого разрыва» при работах на линиях).
  • Встраиваемые в комплектные распределительные устройства.
  • пять категорий размещения (вне и внутри помещений с различными условиями обогрева и вентиляции);
  • десять климатических исполнений (У, ХЛ, УХЛ, ТВ, ТС, Т, М, ОМ, В и О) в зависимости от географического места установки.
Читайте так же:
Выключатели с временной задержкой

В воздушных выключателях (ВВ) энергия сжатого воздуха используется и как движущая сила, перемещающая контакты, и как дугогасящая среда. Принцип действия дугогасительного устройства (ВВ) заключается в том, что дуга, образующаяся между контактами, подвергается интенсивному охлаждению потоком сжатого воздуха, вытекающего в атмосферу. При прохождении тока через ноль температура дуги падает и сопротивление промежутка увеличивается. Одновременно происходит механическое разрушение дугового столба и вынос заряженных частиц из промежутка.

ВВ конструктивно подразделяются на:

  • Выключатель с открытым отделителем
  • Выключатель с газонаполненным отделителем
  • Выключатель с камерами в баке со сжатым воздухом

Изолирующей и гасящей средой выключателей служит гексафторид серы SF6 (элегаз). Выключатели представляют собой трехполюсный аппарат, полюсы которого имеют одну (общую) раму и управляются одним приводом, либо каждый из трех полюсов выключателей имеет собственную раму и управляется своим приводом (выключатель с пополюсным управлением).

Принцип работы аппаратов основан на гашении электрической дуги (возникающей между расходящимися контактами при отключении тока) потоком элегаза.

Источников возникновения потока газа — два:

  • повышение давления в одной из заполненных газом полостей дугогасительного устройства, обусловленное уменьшением её замкнутого объема, возможность истечения газа из которой в зону расхождения дугогасительных контактов появляется непосредственно перед их размыканием;
  • повышение давления газа в этой же полости вследствие его расширения под действием тепловой энергии самой электрической дуги.

Первый источник превалирует при отключении малых токов, а второй — больших.

Полюс выключателя

Колонковое исполнение. Полюс представляет собой вертикальную колонну, состоящую из двух (и более) изоляторов, в верхнем из которых размещено дугогасительное устройство (ДУ), а нижний служит опорой ДУ и обеспечивает ему требуемое изоляционное расстояние от заземленной рамы. Внутри опорного изолятора размещена изоляционная штанга, соединяющая подвижный контакт ДУ с приводной системой аппарата.

Баковое исполнение. Полюс представляет собой металлический цилиндрический бак, на котором установлены два изолятора, образующие высоковольтные вводы выключателя. ДУ в таком выключателе размещено в заземленном металлическом корпусе.

Комбинированное исполнение. Полюс представляет собой металлический корпус в виде сферы, на котором установлены фарфоровые изоляторы, образующие высоковольтные вводы выключателя, в одном из которых размещено дугогасительное устройство, а в другом — встроенные трансформаторы тока.

В верхней части изолятора обычно устанавливается фильтр — поглотитель влаги и продуктов разложения элегаза под действием электрической дуги. Фильтрующим элементом в нем служит активированный адсорбент — синтетический цеолит NAX.

Также на всех современных выключателях установлен предохранительный клапан — устройство с тонкостенной мембраной, разрывающейся при давлении возникающем при внутреннем коротком замыкании, но не достигающем значения, при котором испытываются собственно изоляторы.

Дугогасительное устройство

Дугогасительное устройство предназначено обеспечивать быстрое гашение электрической дуги, образующейся между контактами выключателя при их размыкании. Разработка рациональной и надежной конструкции дугогасительного устройства представляет значительные трудности, так как процессы, происходящие при гашении электрической дуги, чрезвычайно сложны, недостаточно изучены и обусловливаются многими факторами, предусмотреть которые заранее не всегда представляется возможным. Поэтому окончательная разработка дугогасительного устройства может считаться завершенной лишь после его экспериментальной проверки.

Современные выключатели оснащены дугогасительным устройством автокомпрессионного типа, которые демонстрируют свои расчетные преимущества при отключении больших токов.

ДУ содержит неподвижную и подвижную контактные системы, в каждой из которых имеются главные контакты и снабженные элементами из дугостойкого материала дугогасительные контакты. Главный контакт неподвижной системы и дугогасительный подвижной — розеточного типа, а главный контакт подвижной системы и дугогасительный неподвижной — штыревые.

Подвижная система содержит, кроме главного и дугогасительного контактов, связанную с токовым выводом ДУ неподвижную токоведущую гильзу; поршневое устройство, создающее при отключении повышенное давление в подпоршневой полости, и два фторопластовых сопла (большое и малое), которые направляют потоки газа из зоны повышенного давления в зону расхождения дугогасительных контактов. Большое сопло, кроме того, препятствует радиальному смещению контактов подвижной системы относительно контактов неподвижной, поскольку никогда не выходит из направляющей втулки главного неподвижного контакта.

Главный контакт подвижной системы представляет собой ступенчатую медную гильзу, узкая часть которой адаптирована ко входу в розеточный главный контакт неподвижной системы, а широкая часть имеет два ручья, в которых размещены токосъемные (замкнутые проволочные) спирали, постоянно находящиеся в контакте с охватывающей их неподвижной токоведущей гильзой.

Газовая система

Газовая система аппаратов включает в себя:

  • клапаны автономной герметизации (КАГ) и заправки колонн;
  • коллектор, обеспечивающий во время работы аппарата связь газовых полостей колонн между собой и с сигнализатором изменения плотности элегаза;
  • сам сигнализатор, представляющий собой стрелочный электроконтактный манометр с устройством температурной компенсации, приводящим показания к величине давления при температуре 20ºС;
  • соединительные трубки с ниппелями и уплотнениями.

Сигнализатор изменения плотности элегаза (датчик плотности) имеет три пары контактов, одна из которых, замыкающаяся при значительном снижении плотности элегаза из-за его утечки, предназначена для подачи сигнала (например, светового) о необходимости дозаправки колонн, а две других, размыкающихся при недопустимом падении плотности элегаза, предназначены для блокирования управления выключателем или для автоматического отключения аппарата с одновременной блокировкой включения (что определяется проектом подстанции).

Приводы выключателей обеспечивают управление выключателем — включение, удержание во включенном положении и отключение. Вал привода соединяют с валом выключателя системой рычагов и тяг. Привод выключателя должен обеспечивать необходимую надежность и быстроту работы, а при электрическом управлении — наименьшее потребление электроэнергии.

В элегазовых выключателях применяют два типа приводов:

  • аккумулятором энергии является комплект винтовых цилиндрических пружин
  • управляющим органом является кинематическая система рычагов, кулачков и валов.
  • аккумулятором энергии является комплект тарельчатых пружин
  • управляющим органом является гидросистема.

Выключатель является самым ответственным аппаратом в высоковольтной системе, при авариях он всегда должен обеспечивать четкую работу. При отказе выключателя авария развивается, что ведет к тяжелым разрушениям и большим материальным потерям, связанным с не доступом электроэнергии, прекращением работы крупных предприятий.

В связи с этим основным требованием к выключателям является особо высокая надежность их работы во всех возможных эксплуатационных режимах. Отключение выключателем любых нагрузок не должно сопровождаться перенапряжениями, опасными для изоляции элементов установки. В связи с тем, что режим короткого замыкания для системы является наиболее тяжелым, выключатель должен обеспечивать отключение цепи за минимально возможное время.

Общие требования к конструкциям и характеристикам выключателей устанавливается стандартами:

  • ГОСТ Р 52565-2006 «Выключатели переменного тока на напряжение от 3 до 750 кВ. Общие технические условия.»
  • ГОСТ 12450-82 «Выключатели переменного тока высокого напряжения. Отключение ненагруженных линий».
  • ГОСТ 8024-84 «Допустимые температуры нагрева токоведущих элементов, контактных соединений и контактов аппаратов и электротехнических устройств переменного тока на напряжение свыше 1000 В.»
  • ГОСТ 1516.3-96 «Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции».

Вывод выключателя для ревизии и ремонта связан с большими трудностями, так как приходится либо переходить на другую схему распредустройства, либо просто отключать потребителей. В связи с этим выключатель должен допускать возможно большее число отключений коротких замыканий без ревизии и ремонта. Современные выключатели могут отключать без ревизии до 15 коротких замыканий при полной мощности отключения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector