Pollife.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сиротенко Б. Г. Электрические станции и подстанции. Часть 2 — файл

Сиротенко Б.Г. Электрические станции и подстанции. Часть 2 — файл n1.doc

стороне 35 кВ и выше
Главная схема станции при U > 35кВ, как правило, является частью электрической системы и потому она не может выбираться без учета режимов и особенностей ЭЭС в целом. Поэтому не существует универсальной схемы электрических соединений при напряжении на высоковольтной стороне станции или подстанции выше 35кВ.

Среди большого набора вариантов главных схем наибольшее распространение получили: кольцевые схемы; схемы с одной рабочей и обходной системами шин; схемы с двумя рабочими и обходной системами шин; схемы с двумя системами шин и тремя выключателями на две цепи; схемы с двумя системами шин и четырьмя выключателями на три цепи.

Рисунок 11.1. Кольцевая схема с четырьмя присоединениями.
11.1. Кольцевые схемы
В кольцевых схемах (рисунок 11.1) выклю­чатели соединяются между собой, образуя кольцо. Каждый элемент – линия, трансформатор – присоединяется между двумя выключателями. В кольцевых схемах ревизия любого выключателя производится без перерыва электроснабжения какого-либо элемента. Так, при ревизии выключателя Q1 отключают его и разъединители, установленные по обе стороны выключателя. При этом обе линии и трансформаторы остаются в работе, однако схема становится менее надежной из-за разрыва кольца. В кольцевых схемах надежность работы выключателей выше, чем в схемах с одинарной и двойной системой сборных шин, так как имеется возможность опробования любого выключателя в период нормальной работы схемы. Опробование выключателя путем его отключения не нарушает работу присоединения и не требует никаких переключений в схеме.

В цепях присоединения линий разъединители не устанавливают, что упрощает схему ОРУ. Вместе с тем, отказ от установки разъединителей в цепях линий приводит к сложным работам по реконструкции ОРУ в случае добавления хотя бы одной линии. На рисунке 11.1. приведена схема с четырехугольником, но может быть с трех- и шестиугольником и их вариантами.

  • высокая надежность электроснабжения. Отключение всех присоединений маловероятно. Оно может произойти при ревизии одного из выключателей, например Q1, коротком замыкании на линии W2 и одновременном отказе Q4;
  • использование разъединителей только для ремонтных работ. Количество операций разъединителями в таких схемах невелико.
  • более сложный выбор трансформаторов тока, выключателей, разъединителей, устанавливаемых в кольце, так как в зависимости от режима работы схемы ток, протекающий по аппаратам, меняется. Например, при ревизии Q1 в цепи Q2 ток возрастает в два раза;
  • релейная защита должна выбираться в этих схемах с учетом возможных режимов при выводе в ревизию выключателей кольца.

Рисунок 11.2. Схема с одной рабочей и обходной системами шин

В нормальном режиме работы обходная система шин АО находится без напряжения, разъединители QSO1, QSO2, соединяющие линии с АО, отключены.

В схеме предусмотрен обходной выключатель QО, который может быть присоединен к любой секции с помощью развилки из двух разъединителей QS5 и QS7.

  1. включить обходной выключатель QО при включённых QS6 и QS5 для проверки исправности обходной системы шин;
  2. отключить QО;
  3. включить QS01;
  4. включить QО;
  5. отключить Q1;
  6. отключить QS1 и QS2.

С целью экономии стоимости ОРУ, схема может выполняться таким образом, что функции обходного и секционного выключателей в ней могут быть совмещены. Для этого в схеме может устанавливаться перемычка с разъединителями QS8 и QS9 (см. рисунок 11.2) В нормальном режиме работы QS8 и QS9 включены, выключатель QО включен и присоединен разъединителем QS7 к секции В2. Секции В1 и В2 соединяются между собой через QО, QS6, QS7, QS8, QS9, а выключатель QО выполняет функции секционного. При замене линейного выключателя обходным выключатель QО отключается, затем отключают разъединители QS8, QS9, и поступают далее как и в ранее описанном случае по пп. 3-6. При большом числе присоединений (7-15) рекомендуется схема с отдельным обходным QО и секционным QВ выключателями. Это позволяет сохранить параллельную работу линий при ремонтах выключателей.

  • малое число выключателей (один на одно – два присоединения);
  • относительно малые массы, габариты и стоимость РУ.
  • на все время ремонта секционного выключателя параллельная работа секций (и линий) нарушается;
  • ремонт одной из секций связан с отключением всех линий, присоединенных к этой секции и одного трансформатора.
Область применения схем с одной рабочей и обходной системами шин: рекомендуется для ВН подстанций 110 кВ при числе присоединений до шести включительно (с учетом трансформаторов), когда нарушение параллельной работы линий допустимо и отсутствует перспектива дальнейшего расширения подстанции. Если ожидается расширение РУ, то в цепях трансформаторов устанавливаются выключатели. Схемы с трансформаторными выключателями могут применяться для напряжений 110кВ и 220кВ на стороне высокого напряжения и с.н. подстанций.

11.3. Схема с двумя рабочими и обходной системой шин
Для РУ 110кВ … 220кВ с большим числом присоединений применяются схемы с двумя рабочими и обходной системами шин с одним выключателем на цепь (рисунок 11.4.).

Читайте так же:
Как расшифровать маркировку автоматического выключателя

Рисунок 11.4. Схема с двумя рабочими и обходной системами шин

Как правило, обе системы шин находятся под питанием при фиксированном распределении присоединений: линия W1 и трансформатор Т1 присоединены к первой системе шин А1, линия W2 и трансформатор Т2 присоединены к системе шин А2; шиносоединительный выключатель QА включен. Такое соединение значительно увеличивает надежность схемы, так как при коротком замыкании на шинах отключается шиносоединительный выключатель QА и только половина присоединений потеряет питание. Если замыкание устойчивое, то присоединения, потерявшие питание, переводятся на исправную систему шин. Перерыв электроснабжения этой половины присоединений определяется длительностью переключения присоединений.

Достоинства схемы:

  • достаточно высокая надежность схемы;
  • относительно малое время перерыва электроснабжения при авариях на одной из систем шин.
  • повреждение шиносоединительного выключателя QА равносильно короткому замыканию на обеих системах шин;
  • усложняется эксплуатация РУ, так как при выводе в ревизию и ремонт выключателей требуется большое число операций разъединителями;
  • увеличены затраты на сооружение ОРУ в связи с установкой шиносоединительного, обходного выключателей и большого количества разъединителей.

на два присоединения
В распределительных устройствах 330…750кВ применяется схема (рисунок 11.5.) с двумя системами шин и тремя выключателями на два присоединения.

Как следует из схемы на шесть присоединений необходимо иметь в этой схеме 9 выключателей, т.е. на каждое присоединение приходится полтора выключателя (поэтому схема носит название «полуторной» или «3/2 выключателя на цепь»).

Каждое присоединение включено через два выключателя. Для отключения, например, линии W2 надо отключить выключатели Q5 и Q6, а для отключения трансформатора Т2 – выключатели Q4 и Q5.

Схемы распределительных устройств

Ранее, в 1й части, была дана формулировка распределительного устройства (РУ), как элемента структурной схемы энергообъекта (станции или подстанции).

РУ – это установка, предназначенная для приема и распределения электроэнергии на одном напряжении и содержащая коммутационные аппараты (выключатели и разъединители, а на подстанциях могут быть отделители и короткозамыкатели), измерительные аппараты (трансформаторы тока и напряжения) и проводники обеспечивающие связь между аппаратами.

Существует большое многообразие схем РУ отличающихся надежностью, оперативной гибкостью и соответственно стоимостью. Имеет место зависимость: чем выше надежность и оперативная гибкость РУ – тем выше его стоимость. К РУ подключаются различные присоединения. К основным присоединениям можно отнести: линии электропередачи (W), силовые трансформаторы (T) и генераторы (G) (если это РУ генераторного напряжения на ТЭЦ).

Все многообразие РУ можно разделить на схемы РУ со сборными шинами и схемы РУ без сборных шин. Последние в свою очередь можно разделить на РУ по упрощенным схемам и на РУ на основе кольцевых схем.(многоугольники) Во многих схемах РУ можно встретить части схемы, которые содержат три последовательно включенных элемента: разъединитель (QS1), выключатель (Q), трансформатор тока (TA) и еще один разъединитель (QS2).

Рассмотрим некоторые самые распространенные схемы РУ в каждой из указанной групп.

РУ по упрощенным схемам. РУ по упрощенным схемам представляют собой различные варианты блоков линия – трансформатор или мостиков, не являются характерными для электростанций и обычно применяются на стороне высокого напряжения подстанций при небольшом числе присоединений. Сюда же можно отнести и схему заход – выход.

Варианты этих схем приведены на рис.8.1. Здесь линии показаны стрелками, а силовые трансформаторы показаны перечеркнутыми (регулировка напряжения под нагрузкой). Линии и силовые трансформаторы не являются элементами РУ, а представляют собой присоединения к РУ. В схеме РУ показаны выключатели, разъединители, трансформаторы тока и трансформаторы напряжения.

РУ по схеме блок линия – трансформатор (рис. 8.1, б) применяется на тупиковых однотрансформаторных подстанциях в качестве РУ ВН при одной питающей линии. На двухтрансформаторных тупиковых подстанциях при двух питающих линиях применяют РУ по схеме два блока линия – трансформатор с выключателями и неавтоматической перемычкой со стороны линий (рис. 8.1,в).

РУ по схеме мостиков (рис. 8.1, г и д) применяются на высокой стороне транзитных подстанциях, которые включаются в рассечку транзитной линии. В пределах подстанции транзит мощности происходит по цепи автоматической перемычки, содержащей выключатель. Кроме этого выключателя в схеме мостиков есть еще два выключателя. Они могут быть установлены или со стороны силовых трансформаторов (рис. 8.1, г ) или со стороны линий (рис. 8.1, д ). На время ремонта элементов автоматической перемычки, чтобы не прекращать транзит мощности, предусмотрена неавтоматическая перемычка (без выключателя), которую называют ремонтной.

Читайте так же:
Концевой выключатель нормально разомкнут

Рис. 8.1. РУ по упрощенным схемам:

а — блок с разъединителем; б — то же, но с выключателем; в — два блока с выключателями и неавтоматической перемычкой со стороны линий; г — мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов;

Продолжение рис. 8.1:

д — мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий; е — заход—выход

На транзитных однотрансформаторных подстанциях применяют РУ по схеме заход—выход (рис. 8.1, е ). Здесь также есть ремонтная перемычка без выключателя

Схемы РУ со сборными шинами. РУ со сборными шинами состоит из сборных шин, к которым подключаются различные присоединения. К основным присоединениям можно отнести: линии электропередачи, силовые трансформаторы и генераторы (если это РУ генераторного напряжения).

Сборными шинами называются участки шин жесткой или гибкой конструкции, обладающих малым электрическим сопротивлением, предназначенные для подключения присоединений.

В схемах со сборными шинами в цепи основных присоединений устанавливаются следующие аппараты. Со стороны сборной шины устанавливается разъединитель, который называют шинным, затем устанавливают выключатель, после выключателя – трансформатор тока, а за ним, со стороны присоединения, еще один разъединитель, который называют линейным или трансформаторным (в зависимости от присоединения).

Среди множества РУ со сборными шинами можно выделить следующие:

· схемы РУ с одной рабочей системой шин (обычно секционированной);

· схемы РУ с одной рабочей и обходной системами шин;

· схемы РУ с двумя рабочими и обходной системами шин;

· схемы с двумя рабочими системами шин и тремя выключателями на два присоединения.

Схема РУ с одной рабочей системой шин является простой, наглядной, экономичной, но не обладает достаточной оперативной гибкостью. При ремонте выключателя или другого аппарата в цепи присоединения оно теряет питание, а при ремонте шины или секции шин теряют связь все присоединения, связанные с этой шиной (секцией).

Рис. 8.2 Схема РУ с одной рабочей системой шин: а – несекционированная выключателем; б – секционированная выключателем.

На электростанциях такая схема в секционированном варианте может применятся в схемах РУ питания собственных нужд 6 кВ или в генераторном РУ 6 – 10 кВ на ТЭЦ.

На подстанциях такая схема в секционированном варианте может применятся в схемах РУ на стороне низкого напряжения 6 – 10 кВ (иногда 35 кВ)(РУ НН).

Схема РУ с одной рабочей и обходной системами шин применяется на станциях и подстанциях при напряжении 110, 220 кВ, если число присоединений меньше семи. Важным достоинством данной схемы является возможность замены любого (одного в данный момент) выключателя в цепи присоединения при его ремонте или ревизии обходным выключателем (QB1 на рис.8.3) без перерыва питания присоединения. Путь тока в обход ремонтируемого выключателя создается с помощь обходного выключателя и обходной системы шин. Часто рабочая система шин в этой схеме секционируется, как это и показано на рисунке. В обычном режиме работы обходная система шин не находится под напряжением и её шинные разъединители (QSB ) отключены. В отключенном положении находятся и обходной выключатель и разъединители в его цепи.

Основные операции по замене выключателя в цепи присоединения обходным с учетом правил коммутации рассмотрим на примере выключателя Q1 в цепи линии W1:

-Сначала включают разъединители в цепи обходного выключателя QB1, причем, в вилке разъединителей включают тот, который связан с той же секцией что и W1.

-После этого включают QB1 и этим подают напряжение на обходную шину. Это делается для проверки изоляции обходной шины.

-На следующем шаге отключают QB1.

-Теперь, когда уровень изоляции проверен, включают шинный разъединитель QSB1 в цепи W1.

-Вновь включают QB1.

-Теперь мы имеем два пути протекания тока в цепи W1: один через Q1, а другой через QB1.

-Теперь можно отключить Q1 и разъединители в его цепи за исключением шинного разъединителя QSB1.

Однако в этой схеме сохраняется тот недостаток, что при ремонте секции рабочих шин связь между присоединениями этой секции теряется. Этого недостатка лишена схема с двумя рабочими системами шин, часто она имеет и обходную шину.

Читайте так же:
Выключатель с задержкой времени включения

Рис. 8.3 Схема с одной рабочей секционированной и обходной системами шин (трансформаторы тока и напряжения не показаны): QSB1, QSB2, QSB3 – шинные разъединители обходной системы шин в цепях присоединений; Q1 – выключатель в цепи присоединения; QS1 и QS2 – шинный и линейный разъединители в цепи присоединения; QB1 – обходной выключатель; QK1 (QK2) – секционный выключатель.

Схема РУ с двумя рабочими и обходной системами шин применяется при напряжении РУ 110, 220 кВ, если число присоединений не меньше семи. В этой схеме часть присоединений связана с одной рабочей шиной (К1), а часть – с другой (К2). Но любое присоединение можно перевести с помощью шиносоединительного выключателя QK и шинных разъединителей присоединения с одной системы рабочих шин на другую. (При этой операции шиносоединительный выключатель QK и разъединители в его цепи должны находиться во включенном состоянии.) Это используют при ремонте любой рабочей шины. Наличие обходного выключателя и обходной шины даёт те же преимущества, что и в предыдущей схеме.

Рис. 8.4 Схема с двумя рабочими и обходной системами шин (трансформаторы тока и напряжения не показаны): QK – шиносоединительный выключатель; QB – обходной выключатель; К1 – первая рабочая система шин; К2 – вторая рабочая система шин; КВ – обходная система шин.

Недостатком этой схемы, как и предыдущих, остаётся то, что при аварийном отключении одной из рабочих шин (например, в следствие КЗ на шине) она будет отключена и потеряется связь между присоединениями, которые связаны с этой шиной.

Схема с двумя рабочими системами шин и тремя выключателями на два присоединения рекомендована к применению в РУ напряжением 330 – 750 кВ и при числе присоединений шесть и более. В этой схеме за счет дополнительного расхода выключателей (условно 1,5 выключателя на присоединение, отсюда второе название схемы «полуторная») достигается высокая оперативная гибкость и надежная связь между присоединениями при многих аварийных и оперативных ситуациях.

Среди достоинств схемы можно отметить, что при ремонте или ревизии любого выключателя все присоединения остаются в работе, а при аварийном отключений одной из рабочих шин связь между присоединениями не теряется, так как она осуществляется через оставшуюся в работе шину

Среди недостатков можно указать на необходимость коммутации присоединений двумя выключателями и на повышенную стоимость. Кроме этого в этой схеме усложняются вторичные цепи трансформаторов тока, т.к. трансформаторы тока здесь устанавливаются в цепи выключателей и чтобы получить ток присоединения приходится суммировать (согласно первому закону Кирхгофа) токи вторичных обмоток двух трансформаторов.

Рис. 8.5 Полуторная схема РУ(трансформаторы тока и напряжения не показаны) : К1 и К2 – рабочие системы шин.

Схемы РУ на основе кольцевых схем (многоугольников). Применяются в РУ 110-220 кВ и более. В кольцевых схемах (схемах многоугольников) выключатели соединяются между собой, образуя кольцо. Каждый элемент — линия, трансформатор — присоединяется между двумя соседними выключателями. Самой простой кольцевой схемой является схема треугольника (рис. 8.6 а). Линия W1 присоединена к схеме выключателями Q1, Q2, линия W2 — выключателями Q2, Q3, трансформатор — выключателями Q1, Q3. Многократное присоединение элемента в общую схему увеличивает гибкость и надежность работы, при этом число выключателей в рассматриваемой схеме не превышает числа присоединений. В схеме треугольника на три присоединения — три выключателя, поэтому схема экономична.

В кольцевых схемах ревизия любого выключателя производится без перерыва работы какого-либо элемента. Так, при ревизии выключателя Q1 отключают его и разъединители, установленные по обе стороны выключателя. При этом обе линии и трансформатор остаются в работе, однако схема становится менее надежной из-за разрыва кольца. Если в этом режиме произойдет КЗ на линии W2, то отключаются выключатели Q2 и Q3, вследствие чего обе линии и трансформатор останутся без напряжения. Полное отключение всех элементов подстанции произойдет также при КЗ на линии и отказе одного выключателя: так, например, при КЗ на линии W1 и отказе в работе выключателя Q1 отключаются выключатели Q2 и Q3. Вероятность совпадения

Рис. 8.6 Кольцевые схемы (многоугольники) (трансформаторы тока и напряжения не показаны).

повреждения на линии с ревизией выключателя, как было сказано выше, зависит от длительности ремонта выключателя. Увеличение межремонтного периода и надежности работы выключателей, а также уменьшение длительности ремонта значительно повышают надежность схем.

Читайте так же:
Как сделать простой выключатель проходным

В кольцевых схемах надежность работы выключателей выше, чем в других схемах, так как имеется возможность опробования любого выключателя в период нормальной работы схемы. Опробование выключателя путем его отключения не нарушает работу присоединенных элементов и не требует никаких переключений в схеме.

На рис. 8.6, б представлена схема четырехугольника (квадрата). Эта схема экономична (четыре выключателя на четыре присоединения), позволяет производить опробование и ревизию любого выключателя без нарушения работы ее элементов. Схема обладает высокой надежностью. Отключение всех присоединений маловероятно, оно может произойти при совпадении ревизии одного из выключателей, например Q1, повреждении линии W2 и отказе выключателя второй цепи Q4. При ремонте линии W2 отключают выключатели Q3, Q4 и разъединители, установленные в сторону линий. Связь оставшихся в работе присоединений W1, Т1 и Т2 осуществляется через выключатели Ql, Q2. Если в этот период повредится Т1, то отключится выключатель Q2, второй трансформатор и линия W1 останутся в работе, но транзит мощности будет нарушен. Установка линейных разъединителей QS1 и QS2 устраняет этот недостаток.

Достоинством всех кольцевых схем является использование разъединителей только для ремонтных работ. Количество операций разъединителями в таких схемах невелико.

К недостаткам следует отнести более сложный выбор трансформаторов тока, выключателей и разъединителей. Трансформаторы тока здесь устанавливаются, так же как и в полуторной схеме, в цепи выключателей

Главная схема электрических соединений электростанции или подстанции — это совокупность основного электрооборудования <генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.

Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т.д.

На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.

Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).

Большая Энциклопедия Нефти и Газа

Применение двойной системы шин позволяет при повреждении на рабочей системе шин переводить работу всей установки, не останавливая ее, на запасную систему шин. Рабочая система шин для еще большего повышения надежности секционируется выключателем, что исключает возможность выхода из работы всей ТЭЦ при коротком замыкании на рабочей системе шин. При таком коротком замыкании отключится при секционировании только одна секция, которая может быть быстро переключена на запасную систему шин и тем самым снова введена в работу; переключенная на запасные шины секция может быть соединена с оставшейся в работе рабочей секцией шиносоединительным выключателем, показанным сбоку на каждой секции.  [1]

Применение двойной системы шин позволяет при повреждении на рабочей системе шин переводить работу всей установки, не останавливая ее, на запасную систему шин. Рабочая система шин для еще большего повышения надежности секционируется выключателем, что исключает возможность выхода из работы всей ТЭЦ при коротком замыкании на рабочей системе шин. При таком коротком замыкании отключится при секционировании только одна секция, которая может быть быстро переключена на запасную систему шин и тем самым снова введена в работу; переключенная на запасные шины секция может быть соединена с оставшейся в работе ра — бочей секцией шиносоединительным выключателем, показанным сбоку на каждой секции.  [2]

Область применения двойной системы шин ограничивается лишь группой потребителей, плановое одновременное отключение которых по каким-либо причинам нежелательно и режимы работы которых невозможно согласовать. В этом случае применение двойной системы шин может оказаться целесообразным.  [3]

При применении двойной системы шин при напряжении 6 — 10 кВ одна из них обычно разделяется на секции по числу вводов или понизительных трансформаторов, а другая выполняется несек-ционированной.  [5]

При применении двойной системы шин при напряжении 6 — 10 кВ одна их них обычно разделяется на секции по числу вводов или понизительных трансформаторов, а другая выполняется несекционированной.  [6]

При применении двойной системы шин одна из них обычно разделяется на секции, а другая выполняется несекционированной.  [7]

При применении двойной системы шин на напряжение 6 — 10 кВ одна из них обычно разделяется на секции по числу вводов или понизительных трансформаторов, а другая выполняется несекционированной.  [9]

Читайте так же:
Автоматический выключатель 3 полюсный 100а abb

Широкое применение комплектных расстрел-устройств также ограничивает применение двойной системы шин . Высококачественные заводские КРУ с выкатными камерами и изолированными шинами вполне обеспечивают надежное электроснабжение при одной системе шин. В то же время КРУ с двойной системой шин чрезвычайно громоздки и дороги и редко применяются даже за рубежом, а у нас пока не изготовляются.  [10]

Область применения двойной системы шин ограничивается лишь группой потребителей, плановое одновременное отключение которых по каким-либо причинам нежелательно и режимы работы которых невозможно согласовать. В этом случае применение двойной системы шин может оказаться целесообразным.  [11]

Область применения двойной системы шин ограничивается лишь группой потребителей, плановое одновременное отключение которых по каким-либо причинам нежелательно и режимы работы которых невозможно согласовать. В этом случае применение двойной системы шин может оказаться целесообразным.  [12]

Однако распределительные устройства с двумя системами шин дороги, сложны в эксплуатации и требуют специальных блокировок. Анализ аварий, вызванных ошибочными действиями персонала при операциях с шинными разъединителями при двойной системе шин, показывает, что значительная часть их произошла вследствие неправильных переключений при переводе присоединений с одной системы шин на другую. Это также ограничивает применение двойной системы шин .  [13]

Форум ceshka.ru

Отличие секции шин, сборной шины, системы шин между собой

Страница 1 из 1[ Сообщений: 7 ]
Отличие секции шин, сборной шины, системы шин между собой
Отличие секции шин, сборной шины, системы шин между собой

Всем привет! Учусь в университете, второй год мучает вопрос чем отличается секция шин, сборная шина и система шин между собой? В интернете однозначного определения не нашел, в литературе тоже. Везде расплывчатые понятия, без конкретики. Сделал небольшой рисунок, чтобы нам понятнее было говорить.

Изображение

К примеру, из учебника Рожковой. Электрооборудование станций и подстанций. Глава 5. Главные схемы электростанций и подстанций. стр. 388.
Цитата: "При трех или более секциях сборных шин ГРУ устанавливаются два трансформатора связи. Это позволяет создать симметричную схему и уменьшить перетоки мощности между секциями при отключении одного генератора". Что автор имел ввиду под секцией сборных шин?

В качестве примера, выдержка из ГОСТ Р 51321.1-2000 "Устройства комплектные низковольтные распределения и управления. Часть 1. УСТРОЙСТВА, ИСПЫТАННЫЕ ПОЛНОСТЬЮ ИЛИ ЧАСТИЧНО. Общие технические требования и методы испытаний":

2.1.4 шина: Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
2.1.4.1 сборная шина: Шина, к которой могут быть присоединены одна или несколько распределительных шин и/или блоков ввода или вывода.
2.1.4.2 распределительная шина: Шина в пределах одной секции НКУ, соединенная со сборной шиной и питающая устройство вывода.

( моё примечание : здесь понятие "секция" подразумевает другое, а именно:
2.2.1 секция (см. рисунок С.4): Часть НКУ между двумя последовательными вертикальными перегородками.
— так что не путаем с понятием "секция шин" применительно к нашему вопросу).

2.3.4 система сборных шин (шинопровод) (см. рисунок С7): Устройство, представляющее собой систему проводников, состоящее из шин, установленных на опорах из изоляционного материала и в каналах, коробах или подобных оболочках, и прошедшее типовые испытания (МЭС 441-12-07, с изменением).
Устройство может состоять из следующих элементов:
— прямые секции с узлами ответвления или без них;
— секции для изменения положения фаз, разветвления, поворота, а также вводные и переходные;
— секции ответвленные.
Примечание — Термин «шинопровод» не определяет геометрическую форму, габариты и размеры проводников.

Если дальше копнуть ГОСТы, можно будет и для электротехнических устройств высокого напряжения найти подобные определения, но думаю, что они будут очень близки к вышеприведённым.

Прохожий, благодарю вас за ответ. Более менее понятно становится. А я столько времени потратил, чтобы разобраться. У двоих преподов спрашивал (правда они на кафедре электроснабжения работают, а не на кафедре станции и подстанции).

Из сказанного вами не понял вот этого предложения: "Секция — это участок сборных шин с одним потенциалом." Если взять рисунок выше. То получается, что на 1 секции шин 3 фазы. Разность потенциалов между этими 3 мя фазами будет присутствовать. Для линии 10 кВ разность потенциалов между этими 3 мя фазами будет равна линейному напряжению, то есть 10 кВ. Какой же здесь один потенциал? 3 фазы, 3 разных потенциала будут. Хотя это переменное напряжение, может я что то путаю.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector